Switch from FiniteField to finite_field #4208
Annotations
1 warning
../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2320 docstrings not included in the manual:
_quadratic_L_function_squared :: Tuple{Any, Any}
local_multiplicative_group_modulo_squares :: Tuple{Vector{ZZRingElem}}
minimal_subgroups :: Union{Tuple{GrpAbFinGen}, Tuple{GrpAbFinGen, Bool}}
isequivalent_with_isometry
padic_normal_form :: Tuple{Any, Union{Integer, ZZRingElem}}
isrational
pr_torsion_basis :: Union{Tuple{T}, Tuple{EllCrv{T}, Any}, Tuple{EllCrv{T}, Any, Any}} where T<:Union{QQFieldElem, nf_elem}
GFPFmpzAbsSeriesRing
islocal_norm
as_number_fields :: Union{Tuple{Hecke.AbsAlgAss{T}}, Tuple{T}} where T
crt_tree :: Union{Tuple{T}, Tuple{Vector{T}, Vector{T}}} where T
modp_reduction :: Tuple{EllCrv{nf_elem}, NfOrdIdl}
witt_invariant :: Tuple{AbstractLat, Any}
FqNmodFiniteField
isnorm_divisible_pp
rank_2_torsion :: Union{Tuple{EllCrv}, Tuple{EllCrv, Any}, Tuple{EllCrv, Any, Any}}
nice_order :: Union{Tuple{Hecke.AlgAssAbsOrd{S, T}}, Tuple{T}, Tuple{S}} where {S, T}
nice_order :: Union{Tuple{Hecke.AlgAssRelOrd{S, T, U}}, Tuple{U}, Tuple{T}, Tuple{S}} where {S, T, U}
is_divisible :: Tuple{Hecke.AbsAlgAssElem, Hecke.AbsAlgAssElem, Symbol}
onei :: Tuple{ComplexField}
onei :: Tuple{CalciumField}
onei :: Tuple{AcbField}
_iseven :: Tuple{MatElem}
CyclotomicField
principal_generator_fac_elem :: Tuple{FacElem{NfOrdIdl, Hecke.NfAbsOrdIdlSet{AnticNumberField, nf_elem}}}
abs_upper_bound :: Tuple{Type{ZZRingElem}, arb}
abs_upper_bound :: Tuple{Type{Float64}, arb}
// :: Tuple{FunFldDiff, FunFldDiff}
// :: Union{Tuple{S}, Tuple{EllCrvPt, S}} where S<:Union{Integer, ZZRingElem}
fmpz_mat
dec :: Tuple{ZZRingElem}
lower_bound :: Tuple{arb, Type{ZZRingElem}}
isogeny_map_omega :: Tuple{Isogeny}
spectrum :: Union{Tuple{MatElem{T}}, Tuple{T}} where T<:FieldElem
spectrum :: Union{Tuple{T}, Tuple{MatElem{T}, Any}} where T<:FieldElem
QQMatrixSpace
isfinite_gen
_isnormal :: Tuple{Vector{GrpGenElem}}
_isnormal :: Tuple{Vector{GrpGenElem}, GrpGenElem}
index_of_speciality :: Tuple{Divisor}
QQField
iscm_field_easy
isprimitive_root
primary_part :: Tuple{TorQuadModule, ZZRingElem}
primary_part :: Union{Tuple{GrpAbFinGen, Union{Integer, ZZRingElem}}, Tuple{GrpAbFinGen, Union{Integer, ZZRingElem}, Bool}}
next_signed_calkin_wilf :: Tuple{QQFieldElem}
cospi :: Tuple{qqbar}
fmpq_mpoly
TorQuadMod
issublattice
TorQuadModMor
image_of_logarithm_one_units :: Tuple{NonArchLocalField}
norm_equation :: Tuple{Union{fqPolyRepField, Hecke.RelFinField}, Union{fpFieldElem, fqPolyRepFieldElem}}
has_ambient_space :: Tuple{AbstractLat}
embed_any :: Union{Tuple{T}, Tuple{T, T}} where T<:FinField
FqPolyRepMPolyRing
_rational_canonical_form_setup :: Union{Tuple{MatElem{T}}, Tuple{T}} where T<:FieldElem
istotally_real
euler_phi_inv_fac_elem :: Tuple{ZZRingElem}
euler_phi_inv_fac_elem :: Tuple{ZZRingElem, NfOrd}
isdiagonal
rresx :: Tuple{ZZPolyRingElem, ZZPolyRingElem}
rresx :: Union{Tuple{T}, Tuple{S}, Tuple{PolyRingElem{T}, PolyRingElem{T}}} where {S<:Union{Integer, ZZRingElem}, T<:ResElem{S}}
locally_free_basis :: Tuple{Hecke.AlgAssRelOrd, Hecke.AlgAssRelOrdIdl, Union{NfAbsOrdIdl, Hecke.NfRelOrdIdl}}
locally_free_basis :: Tuple{Hecke.AlgAssAbsOrd, Hecke.AlgAssAbsOrdIdl, Union{Int64, ZZRingElem}}
locally_free_basis :: Tuple{Hecke.AlgAssAbsOrdIdl, Union{Int64, ZZRingElem}}
locally_free_basis :: Tuple{Hecke.AlgAssRelOrdIdl, Union{NfAbsOrdIdl, Hecke.NfRelOrdIdl}}
erfc :: Tuple{acb}
erfc :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}}
erfc :: Tuple{ca}
isprime_power
factorial :: Tuple{ZZRingElem}
factorial :: Union{Tuple{RealFieldElem}, Tuple{RealFieldElem, Int64}}
factorial :: Tuple{Int64, ArbField}
factorial :: Tuple{arb}
factorial :: Union{Tuple{Int64, RealField}, Tuple{Int64, RealField, Int64}}
istorsion_point
quadratic_defect :: Tuple{Any, Any}
quadratic_defect :: Tuple{NumFieldOrdElem, Union{NfA
|
The logs for this run have expired and are no longer available.
Loading