Add sparse block diagonal matrices #4200
Annotations
1 warning
../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2348 docstrings not included in the manual:
pmaximal_overorder :: Tuple{Hecke.AlgAssRelOrd, Union{NfAbsOrdIdl, Hecke.NfRelOrdIdl}}
pmaximal_overorder :: Tuple{NfAbsOrd, ZZRingElem}
tates_algorithm_global :: Tuple{EllCrv{QQFieldElem}}
quotient_order :: Tuple{Hecke.AlgAssAbsOrd, Hecke.AlgAssAbsOrdIdl}
fmpz_mod_poly
set_assert_level
cycle :: Tuple{QuadBin{ZZRingElem}}
rational_canonical_form :: Union{Tuple{MatElem{T}}, Tuple{T}} where T<:FieldElem
is_prime_power_with_data :: Tuple{Union{Integer, ZZRingElem}}
automorphism_list :: Tuple{GrpGen}
automorphism_list :: Tuple{CyclotomicExt}
grunwald_wang :: Union{Tuple{Dict{<:NumFieldOrdIdl, Int64}}, Tuple{Dict{<:NumFieldOrdIdl, Int64}, Dict{<:Hecke.NumFieldEmb, Int64}}}
_is2adic_genus :: Tuple{ZZLocalGenus}
_is2adic_genus :: Tuple{Vector{Vector{Int64}}}
equation_order :: Tuple{NfAbsOrd}
is_complex :: Tuple{InfPlc}
is_less_real :: Tuple{qqbar, qqbar}
fqPolyRepMatrixSpace
is_totally_isotropic :: Tuple{TorQuadModule}
has_basis :: Tuple{NfAbsOrdIdl}
has_basis :: Tuple{Hecke.GenOrdIdl}
flog :: Tuple{ZZRingElem, ZZRingElem}
zassenhaus :: Tuple{PolyRingElem{nf_elem}, NfOrdIdl}
left_kernel_basis :: Union{Tuple{MatElem{T}}, Tuple{T}} where T<:FieldElem
det_given_divisor :: Union{Tuple{ZZMatrix, ZZRingElem}, Tuple{ZZMatrix, ZZRingElem, Any}}
det_given_divisor :: Union{Tuple{ZZMatrix, Integer}, Tuple{ZZMatrix, Integer, Any}}
isqrtrem :: Tuple{ZZRingElem}
rand_bits :: Tuple{ZZRing, Int64}
rand_bits :: Tuple{QQField, Int64}
fmpz_mat
NumFieldOrdIdl
_doc_stub_nf2
sqrt1pm1 :: Union{Tuple{RealFieldElem}, Tuple{RealFieldElem, Int64}}
sqrt1pm1 :: Tuple{arb}
rgamma :: Union{Tuple{RealFieldElem}, Tuple{RealFieldElem, Int64}}
rgamma :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}}
rgamma :: Tuple{arb}
rgamma :: Tuple{acb}
is_absolutely_irreducible :: Tuple{QQMPolyRingElem}
_zeta_exact :: Tuple{Any}
show_psi :: Tuple{Integer, Union{Int64, Hecke.NfFactorBase}}
NonSimpleNumField
divisor :: Tuple{AbstractAlgebra.Generic.FunctionFieldElem}
divisor :: Tuple{FunFldDiff}
divisor :: Tuple{GenOrdFracIdl, GenOrdFracIdl}
nullspace_right_rational :: Tuple{ZZMatrix}
isdivisible
dual_of_frobenius :: Tuple{Any}
intersect :: Tuple{Hecke.GenOrdIdl, Hecke.GenOrdIdl}
intersect :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssRelOrdIdl{S, T, U}, Hecke.AlgAssRelOrdIdl{S, T, U}}} where {S, T, U}
intersect :: Union{Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssAbsOrdIdl{S, T}, Hecke.AlgAssAbsOrdIdl{S, T}}} where {S, T}
intersect :: Union{Tuple{GrpAbFinGenMap, GrpAbFinGenMap}, Tuple{GrpAbFinGenMap, GrpAbFinGenMap, Bool}, Tuple{GrpAbFinGenMap, GrpAbFinGenMap, Bool, Hecke.RelLattice{GrpAbFinGen, ZZMatrix}}}
rand_bits_prime :: Union{Tuple{ZZRing, Int64}, Tuple{ZZRing, Int64, Bool}}
primary_decomposition :: Union{Tuple{Hecke.AlgAssAbsOrdIdl}, Tuple{Hecke.AlgAssAbsOrdIdl, Hecke.AlgAssAbsOrd}}
FqMPolyRing
fmpq_mpoly
istotally_complex
biproduct :: Union{Tuple{Vector{T}}, Tuple{T}} where T<:AbstractLat
biproduct :: Union{Tuple{Vector{T}}, Tuple{T}} where T<:AbstractSpace
biproduct :: Tuple{Vararg{GrpAbFinGen}}
smallest_neighbour_prime :: Tuple{HermLat}
is_perfect_power :: Tuple{ZZRingElem}
_decompose_in_reflections :: Tuple{QQMatrix, QQMatrix, Any}
PrimeIdealsSet :: Union{Tuple{S}, Tuple{T}, Tuple{NfOrd, T, S}} where {T<:Union{Integer, ZZRingElem}, S<:Union{Integer, ZZRingElem}}
chebyshev_t2 :: Union{Tuple{Int64, RealFieldElem}, Tuple{Int64, RealFieldElem, Int64}}
chebyshev_t2 :: Tuple{Int64, arb}
proper_spinor_generators :: Tuple{ZZGenus}
rref :: Union{Tuple{SMat{T}}, Tuple{T}} where T<:FieldElement
modular_lambda :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}}
modular_lambda :: Tuple{acb}
islocally_isomorphic
naive_height :: Union{Tuple{EllCrvPt{nf_elem}}, Tuple{EllCrvPt{nf_elem}, Int64}}
naive_height :: Union
|
The logs for this run have expired and are no longer available.
Loading