Skip to content

More functionality for sparse matrices and rows #4194

More functionality for sparse matrices and rows

More functionality for sparse matrices and rows #4194

Triggered via pull request September 21, 2023 13:55
Status Failure
Total duration 1h 26m 8s
Artifacts
This run and associated checks have been archived and are scheduled for deletion. Learn more about checks retention

CI.yml

on: pull_request
Matrix: test
Fit to window
Zoom out
Zoom in

Annotations

4 errors and 1 warning
test (~1.10.0-0, ubuntu-latest)
The runner has received a shutdown signal. This can happen when the runner service is stopped, or a manually started runner is canceled.
test (~1.10.0-0, ubuntu-latest)
The operation was canceled.
test (nightly, ubuntu-latest)
The runner has received a shutdown signal. This can happen when the runner service is stopped, or a manually started runner is canceled.
test (nightly, ubuntu-latest)
The operation was canceled.
Documentation: ../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2317 docstrings not included in the manual: roots :: Union{Tuple{QQMPolyRingElem}, Tuple{QQMPolyRingElem, Int64}} crt_iterative :: Union{Tuple{T}, Tuple{Vector{T}, Vector{T}}} where T cyclotomic_real_subfield :: Union{Tuple{Int64}, Tuple{Int64, Union{Char, AbstractString, Symbol}}, Tuple{Int64, Union{Char, AbstractString, Symbol}, Any}} issplit next_calkin_wilf :: Tuple{QQFieldElem} csgn :: Tuple{ca} csgn :: Tuple{qqbar} _two_adic_symbol :: Tuple{MatElem, Any} iscyclic strong_echelon_form :: Tuple{zzModMatrix} strong_echelon_form :: Tuple{ZZModMatrix} strong_echelon_form :: Tuple{fpMatrix} basis_matrix :: Tuple{Hecke.AlgAssRelOrdIdl} basis_matrix :: Tuple{Hecke.GenOrdIdl} basis_matrix :: Tuple{Vector{<:NumFieldElem}} basis_matrix :: Tuple{Hecke.NfAbsOrdFracIdl} basis_matrix :: Tuple{Hecke.AlgAssRelOrd} basis_matrix :: Tuple{Hecke.AlgAssAbsOrdIdl} basis_matrix :: Tuple{Union{Hecke.NfRelOrdFracIdl, Hecke.NfRelOrdIdl}} basis_matrix :: Tuple{Hecke.AlgAssAbsOrd} basis_matrix :: Tuple{Hecke.AbsAlgAssIdl} _standard_mass :: Tuple{ZZLocalGenus} number_of_partitions :: Tuple{Int64} LocalGenusHerm is_positive :: Tuple{arb} is_positive :: Tuple{RealFieldElem} extend :: Union{Tuple{S}, Tuple{T}, Tuple{Hecke.AlgAssAbsOrdIdl{S, T}, Hecke.AlgAssAbsOrd{S, T}}, Tuple{Hecke.AlgAssAbsOrdIdl{S, T}, Hecke.AlgAssAbsOrd{S, T}, Symbol}} where {T, S} extend :: Tuple{InfPlc, NumField} O :: Tuple{FlintQadicField, Integer} O :: Tuple{FlintPadicField, QQFieldElem} O :: Tuple{FlintPadicField, ZZRingElem} O :: Tuple{ZZLaurentSeriesRingElem} O :: Tuple{FlintQadicField, ZZRingElem} O :: Tuple{FlintQadicField, QQFieldElem} O :: Union{Tuple{FlintPuiseuxSeriesElem{T}}, Tuple{T}} where T<:RingElem O :: Tuple{FlintPadicField, Integer} isless_abs formal_isogeny :: Union{Tuple{Isogeny}, Tuple{Isogeny, Int64}} isnumber NmodRing is_integral_model :: Union{Tuple{EllCrv{T}}, Tuple{T}} where T<:Union{QQFieldElem, nf_elem} teichmuller :: Tuple{padic} teichmuller :: Tuple{qadic} closest_vectors :: Union{Tuple{T}, Tuple{MatrixElem{T}, MatrixElem{T}, T}} where T<:RingElem zzModPolyRing isprincipal isabsolute quartic_rational_point_search :: Union{NTuple{7, Any}, NTuple{8, Any}, NTuple{9, Any}} cyclotomic_extension :: Tuple{ClassField, Int64} cyclotomic_extension :: Tuple{Type{ClassField}, AnticNumberField, Int64} cyclotomic_extension :: Tuple{AnticNumberField, Int64} + :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.AbsAlgAssIdl{S, T, U}, Hecke.AbsAlgAssIdl{S, T, U}}} where {S, T, U} + :: Tuple{TorQuadModuleMor, TorQuadModuleMor} + :: Union{Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssAbsOrdIdl{S, T}, Hecke.AlgAssAbsOrdIdl{S, T}}} where {S, T} + :: Tuple{Hecke.LocalQuadSpaceCls, Hecke.LocalQuadSpaceCls} + :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.QuadSpaceCls{S, T, U}, Hecke.QuadSpaceCls{S, T, U}}} where {S, T, U} + :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssRelOrdIdl{S, T, U}, Hecke.AlgAssRelOrdIdl{S, T, U}}} where {S, T, U} + :: Tuple{TorQuadModule, TorQuadModule} chebyshev_t2 :: Union{Tuple{Int64, RealFieldElem}, Tuple{Int64, RealFieldElem, Int64}} chebyshev_t2 :: Tuple{Int64, arb} transitive_closure :: Tuple{Nemo.FinFieldMorphism} ceil :: Tuple{QQFieldElem} ceil :: Tuple{ca} ceil :: Tuple{qqbar} is_twist :: Tuple{EllCrv, EllCrv} normal_basis :: Union{Tuple{T}, Tuple{T, T}} where T<:FinField issimple UnitGroup :: Union{Tuple{Nemo.ZZModRing}, Tuple{Nemo.ZZModRing, ZZRingElem}} orthogonal_submodule :: Tuple{ZZLat, QQMatrix} Hecke fpField sqrt1pm1 :: Tuple{arb} sqrt1pm1 :: Union{Tuple{RealFieldElem}, Tuple{RealFieldElem, Int64}} fqPolyRepPolyRing my_log_one_minus_inner :: Tuple{ZZRingElem, Int64, Int64, Any} fmma! :: NTuple{5, ZZRingElem} tan :: Tuple{ca} gcd :: Tuple{Vector{ZZRingElem}} gcd :: Tuple{ZZRingElem, ZZRingElem, Vararg{ZZRingEle