Skip to content

More functionality for sparse matrices and rows #4188

More functionality for sparse matrices and rows

More functionality for sparse matrices and rows #4188

Triggered via pull request September 21, 2023 09:22
Status Cancelled
Total duration 25m 47s
Artifacts
This run and associated checks have been archived and are scheduled for deletion. Learn more about checks retention

CI.yml

on: pull_request
Matrix: test
Fit to window
Zoom out
Zoom in

Annotations

5 errors and 1 warning
test (1.6, ubuntu-latest)
The operation was canceled.
test (1.9, ubuntu-latest)
The operation was canceled.
test (1.9, macOS-latest)
The operation was canceled.
test (~1.10.0-0, ubuntu-latest)
The operation was canceled.
test (nightly, ubuntu-latest)
The operation was canceled.
Documentation: ../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2316 docstrings not included in the manual: preimage_map :: Tuple{Nemo.FinFieldMorphism} preimage_map :: Union{Tuple{T}, Tuple{T, T}} where T<:FinField preimage_map :: Tuple{Nemo.FinFieldPreimage} left_kernel :: Tuple{ZZMatrix} var :: Tuple{AnticNumberField} ispositive iterated_neighbours :: Tuple{HermLat, Any} tstbit :: Tuple{ZZRingElem, Int64} QQMPolyRing unique_integer :: Tuple{acb_poly} unique_integer :: Tuple{RealFieldElem} unique_integer :: Tuple{arb_poly} unique_integer :: Tuple{ComplexPoly} unique_integer :: Tuple{arb} unique_integer :: Tuple{ComplexFieldElem} unique_integer :: Tuple{RealPoly} unique_integer :: Tuple{acb} isless_abs_imag isnonnegative gfp_abs_series isfundamental_discriminant GFPFmpzRelSeriesRing primsplit :: Union{Tuple{PolyRingElem{T}}, Tuple{T}, Tuple{S}} where {S<:Union{Integer, ZZRingElem}, T<:ResElem{S}} reduced_charpoly :: Tuple{Hecke.AbsAlgAssElem} chebyshev_u :: Tuple{Int64, arb} chebyshev_u :: Union{Tuple{Int64, RealFieldElem}, Tuple{Int64, RealFieldElem, Int64}} reflection :: Tuple{MatElem, MatElem} compose :: Tuple{Isogeny, Isogeny} compose :: Tuple{TorQuadModuleMor, TorQuadModuleMor} compose :: Tuple{Vector{Isogeny}} compose :: Tuple{QuadBin{ZZRingElem}, QuadBin{ZZRingElem}} pivots_of_ref :: Tuple{MatrixElem} primsplit! :: Union{Tuple{PolyRingElem{T}}, Tuple{T}, Tuple{S}} where {S<:Union{Integer, ZZRingElem}, T<:ResElem{S}} nf :: Tuple{NumFieldOrdIdl} nf :: Tuple{NumFieldOrd} nf :: Tuple{Hecke.NfRelOrdFracIdl} is_isomorphic :: Union{Tuple{T}, Tuple{EllCrv{T}, EllCrv{T}}} where T is_isomorphic :: Union{Tuple{T}, Tuple{T, T}} where T<:Union{Hecke.NfAbsOrdFracIdl{AnticNumberField, nf_elem}, Hecke.AlgAssAbsOrdIdl, NfAbsOrdIdl} formal_x :: Union{Tuple{EllCrv}, Tuple{EllCrv, Int64}} coordinates :: Tuple{NfAbsOrdElem} coordinates :: Tuple{Hecke.NfRelOrdElem} coordinates :: Tuple{Union{Hecke.AlgAssAbsOrdElem, Hecke.AlgAssRelOrdElem}} multiplicities :: Tuple{MSet} ZZPolyRingElem cansolve_with_nullspace :: Tuple{ZZMatrix, ZZMatrix} hypergeometric_1f1 :: Union{Tuple{ComplexFieldElem, ComplexFieldElem, ComplexFieldElem}, Tuple{ComplexFieldElem, ComplexFieldElem, ComplexFieldElem, Int64}} hypergeometric_1f1 :: Tuple{acb, acb, acb} const_glaisher :: Tuple{ArbField} const_glaisher :: Union{Tuple{RealField}, Tuple{RealField, Int64}} quadratic_space :: Tuple{Field, Int64} quadratic_space :: Tuple{Field, MatElem} ZZMPolyRing cokernel :: Union{Tuple{GrpAbFinGenMap}, Tuple{GrpAbFinGenMap, Bool}} coefficients :: Tuple{AlgMatElem} coefficients :: Tuple{Hecke.AbsAlgAssElem} FmpzModPolyRing characteristic_polynomial :: Union{Tuple{T}, Tuple{AbstractAlgebra.Generic.Poly{T}, AbstractAlgebra.Generic.Poly{T}}} where T<:Union{padic, qadic, Hecke.LocalFieldElem} lll_gram_indef_with_transform :: Tuple{MatElem{ZZRingElem}} issubfield_normal parent :: Tuple{ZZRingElem} parent :: Tuple{nf_elem} phi_development :: Union{Tuple{T}, Tuple{T, T}} where T<:PolyRingElem coprime_base_insert :: Tuple{Any, Any} isregular_at ComplexOfMorphisms divexact :: Union{Tuple{T}, Tuple{KInftyElem{T}, KInftyElem{T}}} where T<:FieldElement divexact :: Union{Tuple{T}, Tuple{OrdLocElem{T}, OrdLocElem{T}}, Tuple{OrdLocElem{T}, OrdLocElem{T}, Bool}} where T<:nf_elem basis_pmatrix_wrt :: Tuple{Hecke.AlgAssRelOrdIdl, Hecke.AlgAssRelOrd} _hensel_qf :: Union{Tuple{T}, Tuple{T, T, T, Any, Any, Any}} where T<:Union{ZZModMatrix, zzModMatrix} _p_adic_symbol :: Tuple{MatElem, Any, Any} set_vars! :: Union{Tuple{T}, Tuple{NonSimpleNumField{T}, Symbol}} where T set_vars! :: Union{Tuple{T}, Tuple{NonSimpleNumField{T}, Vector{String}}} where T dual :: Tuple{GrpAbFinGen} tate_pairing :: Union{Tuple{T}, Tuple{EllCrvPt{T}, EllCrvPt{T}, Union{Integer, ZZRingElem}}} where T<:FinFieldElem is2_normal_difficult is_conjugate :: Tuple{ZZMatrix, ZZMatrix} issmooth