Add some tweaks for type stability etc. #4168
Annotations
1 warning
../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2316 docstrings not included in the manual:
function_field :: Tuple{Divisor}
<< :: Tuple{QQFieldElem, Int64}
<< :: Tuple{ZZRingElem, Int64}
<< :: Tuple{ZZMatrix, Int64}
pivots_of_ref :: Tuple{MatrixElem}
is_injective :: Tuple{GrpAbFinGenMap}
is_injective :: Tuple{TorQuadModuleMor}
combit! :: Tuple{ZZRingElem, Int64}
squarefree_part :: Tuple{ZZRingElem}
theta :: Tuple{Vector{acb}, Vector{acb}}
next_calkin_wilf :: Tuple{QQFieldElem}
is_positive_definite :: Tuple{ZZMatrix}
next_signed_minimal :: Tuple{QQFieldElem}
neron_tate_height :: Union{Tuple{EllCrvPt{T}}, Tuple{T}, Tuple{EllCrvPt{T}, Int64}} where T<:Union{QQFieldElem, nf_elem}
crt_tree :: Union{Tuple{T}, Tuple{Vector{T}, Vector{T}}} where T
gamma_regularized :: Tuple{acb, acb}
gamma_regularized :: Tuple{arb, arb}
gamma_regularized :: Union{Tuple{ComplexFieldElem, ComplexFieldElem}, Tuple{ComplexFieldElem, ComplexFieldElem, Int64}}
gamma_regularized :: Union{Tuple{RealFieldElem, RealFieldElem}, Tuple{RealFieldElem, RealFieldElem, Int64}}
coeff :: Tuple{nf_elem, Int64}
coeff :: Tuple{FqFieldElem, Int64}
coeff :: Tuple{FqPolyRepFieldElem, Int64}
zero_divisor :: Tuple{Divisor}
zero_divisor :: Tuple{AbstractAlgebra.Generic.FunctionFieldElem}
NmodRelSeriesRing
isfinite_gen
EllCrv :: Union{Tuple{Vector{S}}, Tuple{T}, Tuple{S}} where {S, T}
is_positive :: Tuple{RealFieldElem}
is_positive :: Tuple{arb}
isprincipal_maximal_fac_elem
solve_dixon :: Tuple{QQMatrix, QQMatrix}
solve_dixon :: Tuple{ZZMatrix, ZZMatrix}
const_log2 :: Union{Tuple{RealField}, Tuple{RealField, Int64}}
const_log2 :: Tuple{ArbField}
valuation :: Tuple{qadic}
valuation :: Tuple{QQMatrix, Any}
valuation :: Tuple{ZZRingElem, ZZRingElem}
valuation :: Tuple{ZZLaurentSeriesRingElem}
valuation :: Tuple{padic}
real_number_field :: Tuple{AnticNumberField, InfPlc}
real_number_field :: Tuple{AnticNumberField, Int64}
ZZIdl
_last_block_index :: Tuple{Union{ZZModMatrix, zzModMatrix}, Any}
det_divisor :: Tuple{ZZMatrix}
canonical_projections :: Tuple{GrpAbFinGen}
finite_divisor :: Tuple{Divisor}
GFPRelSeriesRing
reduce_mod :: Tuple{ZZMatrix, ZZRingElem}
reduce_mod :: Tuple{ZZMatrix, Integer}
reduce_mod :: Union{Tuple{T}, Tuple{MatElem{T}, MatElem{T}}} where T<:FieldElem
collect_small_blocks :: Tuple{Any}
fqPolyRepMPolyRing
is_undefined :: Tuple{ca}
ZZModMatrix
set_precision! :: Tuple{Any, Type{Balls}, Int64}
set_precision! :: Tuple{Type{Balls}, Int64}
local_factor :: Tuple{HermLat, Any}
subalgebra :: Union{Tuple{T}, Tuple{AlgAss{T}, AlgAssElem{T, AlgAss{T}}}, Tuple{AlgAss{T}, AlgAssElem{T, AlgAss{T}}, Bool}, Tuple{AlgAss{T}, AlgAssElem{T, AlgAss{T}}, Bool, Symbol}} where T
subalgebra :: Union{Tuple{T}, Tuple{AlgAss{T}, Array{AlgAssElem{T, AlgAss{T}}, 1}}} where T
subalgebra :: Union{Tuple{T}, Tuple{Hecke.AbsAlgAss{T}, Hecke.AbsAlgAssElem{T}}, Tuple{Hecke.AbsAlgAss{T}, Hecke.AbsAlgAssElem{T}, Bool}, Tuple{Hecke.AbsAlgAss{T}, Hecke.AbsAlgAssElem{T}, Bool, Symbol}} where T
subalgebra :: Union{Tuple{T}, Tuple{Hecke.AbsAlgAss{T}, Vector{<:Hecke.AbsAlgAssElem{T}}}} where T
isbass
minkowski_map :: Union{Tuple{NumFieldOrdElem}, Tuple{NumFieldOrdElem, Int64}}
minkowski_map :: Union{Tuple{T}, Tuple{T, Int64}} where T<:NumFieldElem
isfrom_db
nmod_mat
prime_number :: Tuple{NumFieldOrdIdl}
algebra :: Tuple{Hecke.AlgAssAbsOrd}
algebra :: Tuple{Hecke.AbsAlgAssIdl}
algebra :: Tuple{Hecke.AlgAssAbsOrdIdl}
algebra :: Tuple{Hecke.AlgAssRelOrd}
algebra :: Tuple{Hecke.AlgAssRelOrdIdl}
is_conjugate :: Tuple{ZZMatrix, ZZMatrix}
contains :: Union{Tuple{T}, Tuple{acb, Rational{T}}} where T<:Integer
contains :: Tuple{acb, acb}
contains :: Tuple{ComplexFieldElem, Integer}
contains :: Tuple{RealPoly, ZZPolyRingElem}
contains :: Tuple{ComplexMat, ZZMatrix}
contains :: Union{Tuple{T}, Tuple{arb, Rational{T}}} where T<:Integer
contains :
|
The logs for this run have expired and are no longer available.
Loading