BigFlo is a cutting-edge JavaScript library designed for high precision arithmetic operations of numbers of any size. It enables working with extremely large integers and decimal numbers, overcoming the limitations and quirks of IEEE 754. You can expect stable, predictable, and exact results, limited only by your system's memory. Perfect for financial calculations, scientific computations, and any application demanding high numerical precision down to the last digit.
- Unlimited Number Size: Handle extremely large integers and decimal numbers without limits other than your system's memory.
- Fix for IEEE 754: Overcome the quirks of IEEE 754 for total precision in every digit.
- Compatible with JSON: Supports JSON serialization for easy data handling.
- High Precision Arithmetic: Perform addition, subtraction, multiplication, division, and power operations with absolute accuracy.
- Number and Math Methods: Includes Math and Number utility methods, tailored for large number operations.
- Universal Numeric Input: Accepts numbers in any format, as
String
(recommended for precision),Number
,BigInt
,BigFlo
and even scientific notation. - Performance Optimized: Efficient leveraging of native
BigInt
ensure fast computations, even with massive numbers. - No External Dependencies: Seamlessly integrates with existing JavaScript projects, requiring no external dependencies.
- Convenient Aliases: Use short method aliases and symbolic names for operations (
multiplyBy
,times
,*
) for improved convenience. - Cross-platform Compatibility: Compatible with both Node.js and browser environments, supporting
require()
andimport
syntax. - Developer-Friendly: Designed with a straightforward API, making it accessible to developers of all skill levels.
- Enhanced Accuracy: Ideal for financial applications, scientific research, and any domain requiring precise and large numerical computations.
Installation
npm i bigflo
CommonJS syntax
const BigFlo = require('bigflo');
const num1 = BigFlo(0.2); // Number
const num2 = '0.1'; // String
const result = num1.plus(num2);
console.log(`Result: ${result}`);
// Result: 0.3
ES Modules syntax
import BigFlo from 'bigflo';
const a = 3n; // BigInt
const b = '6e-1'; // Scientific Notation (0.6)
const result = BigFlo(a)['*'](b);
console.log(`Result: ${result}`);
// Result: 1.8
quirk = 0.1 + 0.2 // = 0.30000000000000004
bigflo = BigFlo(0.1)['+'](0.2); // = 0.3
quirk = 0.3 - 0.2 // = 0.09999999999999998
bigflo = BigFlo(0.3)['-'](0.2); // = 0.1
quirk = 0.6 * 3 // = 1.7999999999999998
bigflo = BigFlo(0.6)['*'](3); // = 1.8
quirk = 0.3 / 0.1 // = 2.9999999999999996
bigflo = BigFlo(0.3)['/'](0.1); // = 3
quirk = 0.1 / 0.3 // = 0.33333333333333337
bigflo = BigFlo(0.1)['/'](0.3); // = 0.333333333333333333333333333333333
quirk = 0.1 + 0.7 // = 0.7999999999999999
bigflo = BigFlo(0.1)['+'](0.7); // = 0.8
quirk = 0.2 * 0.2 // = 0.04000000000000001
bigflo = BigFlo(0.2)['*'](0.2); // = 0.04
quirk = 0.7 - 0.4 // = 0.29999999999999993
bigflo = BigFlo(0.7)['-'](0.4); // = 0.3
quirk = 0.3 / 0.2 // = 1.4999999999999998
bigflo = BigFlo(0.3)['/'](0.2); // = 1.5
quirk = 0.000000003 / 0.2 // = 1.5e-8
bigflo = BigFlo('0.000000003')['/'](0.2); // = 0.000000015
// Example: Precise financial calculations
const principal = BigFlo(10000);
const interestRate = BigFlo(0.05);
const years = 5;
// Compound interest calculation
const amount = principal['*'](interestRate['+'](1)['**'](years));
console.log(`Amount after ${years} years: ${amount.toFixed(2)}`);
// Amount after 5 years: 12762.81
// Example: Handling large numbers in scientific computations
const avogadroNumber = BigFlo('6.02214076e+23');
const molecules = avogadroNumber['*'](2);
console.log(`Molecules in 2 moles: ${molecules}`);
// Molecules in 2 moles: 1204428152000000000000000
// how many of the smallest thing possible is inside the whole observable universe?
const PI = '3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679';
const planckLength = BigFlo('1.616255e-35');
const planckVolume = planckLength['**'](3);
const sphereVolume = r => BigFlo(4).setDivisionPrecision(100)['/'](3)['*'](PI)['*'](BigFlo(r)['**'](3));
const observableUniverseDiameter = BigFlo('8.8e26');
const observableUniverseRadius = observableUniverseDiameter['/'](2);
const observableUniverseVolume = sphereVolume(observableUniverseRadius);
const planckVolumeCountInObservableUniverse = observableUniverseVolume['/'](planckVolume).floor();
console.log(`Number of Planck volumes in the observable universe: ${planckVolumeCountInObservableUniverse}`);
// Number of Planck volumes in the observable universe: 84511730484834131206881865680639113619647108892011465350695564305272555636684111446309955229141533316023379319781575896906672933616475618801242275287976816735193410571088873930085447368
import BigFlo from './BigFlo.js';
let phi = "1.618033988749894848204586834365638117720309179805762862135448622705260462818902449707207204189391137484754088075386891752126633862223536931793180060766726354433389086595939582905638322661319928290267880675208766892501711696207032221043216269548626296313614438149758701220340805887954454749246185695364864449241044320771344947049565846788509874339442212544877066478091588460749988712400765217057517978834166256249407589069";
let pi = "3.141592653589793238462643383279502884197169399375105820974944592307816";
// phi multiplied by pi
let result = BigFlo(phi)['*'](pi);
console.log(`Result: ${result}`);
// Result: 5.083203692315259815809509013242198841831839293221154120482332809249978486067803281742547878659541280894609381315647809652472437157002687253977448058691232075726017949776921866615084597175541994376144459229951222947905298133442989827323842164568914074255981755734191011699701938603520047801826678551521546780141772440935062394580909338082095329503034709027317362240861348968583169107439253654312137744324076177917817516717677490798664887072601885417667893466455668275014134080247511284863304
Check out complete examples available in BigFlo.test.js
// number INPUT TYPES:
// String (recommended for exact precision of large numbers)
number = '1234567890.123234345456567678';
// Number (not recommended for large numbers to avoid precision loss)
number = 123456.789;
// BigInt
number = 1234567890n;
number = BigInt(1234567890);
number = BigInt('1234567890');
// BigFlo
number = BigFlo(123);
// scientific notation
number = 1e3; // 1000
number = '1e3'; // 1000
// ADDITION
BigFlo(x).plus(number)
BigFlo(x)['+'](number) // symbolic alias
// SUBTRACTION
BigFlo(x).minus(number)
BigFlo(x)['-'](number) // symbolic alias
// MULTIPLICATION
BigFlo(x).multipliedBy(number)
BigFlo(x).times(number) // short alias
BigFlo(x)['*'](number) // symbolic alias
// DIVISION
BigFlo(x).dividedBy(number)
BigFlo(x).div(number) // short alias
BigFlo(x)['/'](number) // symbolic alias
// POWER
BigFlo(x).toThePowerOf(number)
BigFlo(x).pow(number) // short alias
BigFlo(x)['**'](number) // symbolic alias
// boolean assertions
BigFlo(x).isFinite()
BigFlo(x).isInteger()
BigFlo(x).isNegative()
BigFlo(x).isPositive()
BigFlo(x).isNaN()
BigFlo(x).isSafeInteger()
// EQUALITY COMPARISON OPERATOR
BigFlo(x).isEqual(number)
BigFlo(x).eq(number) // short alias
BigFlo(x)['=='](number) // symbolic alias
// INEQUALITY COMPARISON OPERATOR
BigFlo(x).isDifferent(number)
BigFlo(x).neq(number) // short alias
BigFlo(x)['!='](number) // symbolic alias
// 'GREATER THAN' COMPARISON OPERATOR
BigFlo(x).isGreaterThan(number)
BigFlo(x).gt(number) // short alias
BigFlo(x)['>'](number) // symbolic alias
// 'LESS THAN' COMPARISON OPERATOR
BigFlo(x).isLessThan(number)
BigFlo(x).lt(number) // short alias
BigFlo(x)['<'](number) // symbolic alias
// 'GREATER THAN OR EQUAL' COMPARISON OPERATOR
BigFlo(x).isGreaterThanOrEqual(number)
BigFlo(x).gte(number) // short alias
BigFlo(x)['>='](number) // symbolic alias
// 'LESS THAN OR EQUAL' COMPARISON OPERATOR
BigFlo(x).isLessThanOrEqual(number)
BigFlo(x).lte(number) // short alias
BigFlo(x)['<='](number) // symbolic alias
// convertion methods
BigFlo(x).parseInt() // returns a Number integer (may affect precision, discards fractional part)
BigFlo(x).parseBigInt() // returns a BigInt integer (discards fractional part)
BigFlo(x).parseFloat() // returns a Number float (may affect precision)
// utilities
// not chainable
BigFlo(x).toString() // returns String with the exact number
BigFlo(x).toFixed(precision) // returns String, equivalent to Number().toFixed(precision)
// chainable methods (returns BigFlo)
BigFlo(x).abs() // equivalent to Math.abs()
BigFlo(x).ceil() // equivalent to Math.ceil()
BigFlo(x).floor() // equivalent to Math.floor()
BigFlo(x).round() // equivalent to Math.round()
BigFlo(x).sign() // equivalent to Math.sign()
BigFlo(x).trunc() // equivalent to Math.trunc()
setDivisionPrecision(precision)
// sets the max digits for the result of a division operation
// `precision` is a Number greater than or equal 0
// DEFAULT DIVISION PRECISION: 33
BigFlo(x).setDivisionPrecision(precision) // sets for the instance
BigFlo.setDivisionPrecision(precision) // STATIC: sets for all new instances
// example
BigFlo(1).setDivisionPrecision(5).dividedBy(3); // results 0.33333
BigFlo.setDivisionPrecision(9);
BigFlo(1).dividedBy(3); // results 0.333333333
getDivisionPrecision()
// gets the configured division precision of an instance
BigFlo(x).getDivisionPrecision()
setFractionalRoundingPrecision(precision)
// sets the minimum digits to enable fractional rounding of division and multiplication results
// `precision` is a Number greater than or equal 0, or a Boolean `false`
// DEFAULT FRACTIONAL ROUNDING PRECISION: 33
BigFlo(x).setFractionalRoundingPrecision(precision) // sets for the instance
BigFlo.setFractionalRoundingPrecision(precision) // STATIC: sets for all new instances
setFractionalRoundingPrecision(false) // turns off fractional rounding
// example
BigFlo('0.333333333').times(3); // results 0.999999999
BigFlo('0.333333333333333333333333333333333').times(3); // results 1
BigFlo('0.333333333').setFractionalRoundingPrecision(9).times(3); // results 1
BigFlo.setFractionalRoundingPrecision(false); // turns off fractional rounding for all new instances
BigFlo('0.333333333').times(3); // results 0.999999999
BigFlo('0.333333333333333333333333333333333').times(3); // results 0.999999999999999999999999999999999
getFractionalRoundingPrecision()
// gets the configured fractional rounding precision of an instance
BigFlo(x).getFractionalRoundingPrecision()
Contributions are warmly welcomed. Please feel free to fork the repository, make changes, and submit a pull request.
The project is open-source and free for any use. It is licensed under the MIT License.