Skip to content

Commit

Permalink
update paper for generation artefacts
Browse files Browse the repository at this point in the history
  • Loading branch information
the-rccg committed Aug 16, 2023
1 parent 4fa9c93 commit 851d7b3
Show file tree
Hide file tree
Showing 2 changed files with 28 additions and 23 deletions.
4 changes: 4 additions & 0 deletions .github/workflows/draft-pdf.yml
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
name: JOSS Paper Generation

on: [push]

jobs:
Expand All @@ -7,12 +9,14 @@ jobs:
steps:
- name: Checkout
uses: actions/checkout@v3

- name: Build draft PDF
uses: openjournals/openjournals-draft-action@master
with:
journal: joss
# This should be the path to the paper within your repo.
paper-path: paper.md

- name: Upload
uses: actions/upload-artifact@v1
with:
Expand Down
47 changes: 24 additions & 23 deletions paper.md
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,10 @@ $$
\partial_t n = c_1 \left(\phi - n \right)
- \left[\phi, n \right]
- \kappa_n \partial_y \phi
- \nu \nabla^{2N} n \\
- \nu \nabla^{2N} n
$$

$$
\partial_t \Omega = c_1 \left( \phi - n \right)
- \left[ \phi, \Omega \right]
- \nu \nabla^{2N} \Omega
Expand All @@ -102,36 +105,34 @@ However, the use of the Arakawa Scheme for the Poisson brackets does allow the p

The reason why the Hasegawa-Wakatani Model has been the de-facto testing bed for new methods are its verifiable statistically stationary properties for the complex turbulent system, such as the turbulent particle flux $\Gamma^n$, primary sink $\Gamma^c$, energy E, enstrophy U.

$$
\Gamma^n = - \iint{ \mathrm{d}^2 x \space \left(n \partial_y \phi\right) } \\
\Gamma^c = c_1 \iint{ \mathrm{d}^2 x \space \left(n - \phi\right)^2} \\
E = \small \frac{1}{2} \normalsize \iint{ \mathrm{d}^2 x \space \left(n^2 - \left|\nabla_\bot \phi \right|^2 \right)} \\
U = \small \frac{1}{2} \normalsize \iint{ \mathrm{d}^2 x \space \left(n-\nabla_\bot^2 \phi\right)^2} = \small \frac{1}{2} \normalsize \iint{ \mathrm{d}^2 x \space \left(n-\Omega\right)^2}
$$
$$ \Gamma^n = - \iint{ \mathrm{d}^2 x \space \left(n \partial_y \phi\right) } $$
$$ \Gamma^c = c_1 \iint{ \mathrm{d}^2 x \space \left(n - \phi\right)^2} $$
$$ E = \small \frac{1}{2} \normalsize \iint{ \mathrm{d}^2 x \space \left(n^2 - \left|\nabla_\bot \phi \right|^2 \right)} $$
$$ U = \small \frac{1}{2} \normalsize \iint{ \mathrm{d}^2 x \space \left(n-\nabla_\bot^2 \phi\right)^2} = \small \frac{1}{2} \normalsize \iint{ \mathrm{d}^2 x \space \left(n-\Omega\right)^2} $$

These can be complemented with spectral definitions of these, or the characteristic phase shift $\delta(k_y)$ between the density $n$ and potential $\phi$:

$$
\int{\mathrm{d} k_y \space \Gamma^n \small (k_y)} \normalsize \space = - \int{\mathrm{d} k_y \space \left( i k_y n\small (k_y) \normalsize \phi^* \small (k_y)\normalsize \right) } \\
\delta \small (k_y) \normalsize \space = - \mathrm{Im}\left( \mathrm{log}\left( n^*\small (k_y) \normalsize \space \phi\small (k_y) \normalsize \right) \right) \\
E^N \small (k_y) \normalsize \space = \small \frac{1}{2}\normalsize \big| n \small (k_y) \normalsize \big|^2 \\
E^V \small (k_y) \normalsize \space = \small \frac{1}{2}\normalsize \big| k_y \phi \small (k_y) \normalsize \big|^2
$$

$$ \int{\mathrm{d} k_y \space \Gamma^n \small (k_y)} \normalsize \space = - \int{\mathrm{d} k_y \space \left( i k_y n\small (k_y) \normalsize \phi^* \small (k_y)\normalsize \right) } $$
$$ \delta \small (k_y) \normalsize \space = - \mathrm{Im}\left( \mathrm{log}\left( n^*\small (k_y) \normalsize \space \phi\small (k_y) \normalsize \right) \right) $$
$$ E^N \small (k_y) \normalsize \space = \small \frac{1}{2}\normalsize \big| n \small (k_y) \normalsize \big|^2 $$
$$ E^V \small (k_y) \normalsize \space = \small \frac{1}{2}\normalsize \big| k_y \phi \small (k_y) \normalsize \big|^2 $$


Beside the spectral verification, time-integration can be verified through the expected in- and out-flows in the turbulent phase:
$$
\partial_t E = \Gamma^N - \Gamma ^c - \mathfrak{D}^E \\
\partial_t U = \Gamma^N - \mathfrak{D}^U \\
$$

$$ \partial_t E = \Gamma^N - \Gamma ^c - \mathfrak{D}^E $$
$$ \partial_t U = \Gamma^N - \mathfrak{D}^U $$


Where $\mathfrak{D}^E$ and $\mathfrak{D}^U$ are sinks derived from the diffusion terms of the HW equations, namely:

$$
\mathfrak{D}^E = \quad \iint{ \mathrm{d}^2 x \space (n \mathfrak{D^n} - \phi \mathfrak{D}^\phi)} \\
\mathfrak{D}^U = - \iint{ \mathrm{d}^2 x \space (n - \Omega)(\mathfrak{D}^n - \mathfrak{D}^\phi)} \\
with \quad \mathfrak{D}^n \small (x,y) \normalsize = \nu \nabla^{2N} n \quad and \quad
\mathfrak{D}^\phi \small (x,y) \normalsize \space = \nu \nabla^{2N} \phi
$$

$$ \mathfrak{D}^E = \quad \iint{ \mathrm{d}^2 x \space (n \mathfrak{D^n} - \phi \mathfrak{D}^\phi)} $$
$$ \mathfrak{D}^U = - \iint{ \mathrm{d}^2 x \space (n - \Omega)(\mathfrak{D}^n - \mathfrak{D}^\phi)} $$
$$ with \quad \mathfrak{D}^n \small (x,y) \normalsize = \nu \nabla^{2N} n \quad and \quad
\mathfrak{D}^\phi \small (x,y) \normalsize \space = \nu \nabla^{2N} \phi $$


Note that it is the common practice across all reference texts to calculate the integral $\int\cdot$ as the average over a unit square $\langle \cdot \rangle$ in order to get comparable values for all properties.

Expand Down

0 comments on commit 851d7b3

Please sign in to comment.