A library of useful Stream Gatherers (custom intermediate operations) for Java 23+.
To use this library, add it as a dependency to your build. This library has one transitive dependency - the JSpecify set of annotations for static analysis tools.
Maven
Add the following dependency to pom.xml
.
<dependency>
<groupId>com.ginsberg</groupId>
<artifactId>gatherers4j</artifactId>
<version>0.7.0</version>
</dependency>
Gradle
Add the following dependency to build.gradle
or build.gradle.kts
implementation("com.ginsberg:gatherers4j:0.7.0")
Function | Purpose |
---|---|
debounce(amount, duration) |
Limit stream elements to amount elements over duration , dropping any elements over the limit until a new duration starts |
dedupeConsecutive() |
Remove consecutive duplicates from a stream |
dedupeConsecutiveBy(fn) |
Remove consecutive duplicates from a stream as returned by fn |
distinctBy(fn) |
Emit only distinct elements from the stream, as measured by fn |
dropLast(n) |
Keep all but the last n elements of the stream |
filterWithIndex(predicate) |
Filter the stream with the given predicate , which takes an element and its index |
grouping() |
Group consecute identical elements into lists |
groupingBy(fn) |
Group consecutive elements that are identical according to fn into lists |
interleave(iterable) |
Creates a stream of alternating objects from the input stream and the argument iterable |
interleave(iterator) |
Creates a stream of alternating objects from the input stream and the argument iterator |
interleave(stream) |
Creates a stream of alternating objects from the input stream and the argument stream |
last(n) |
Constrain the stream to the last n values |
orderByFrequencyAscending() |
Returns a stream where elements are ordered from least to most frequent as WithCount<T> wrapper objects. |
orderByFrequencyDescending() |
Returns a stream where elements are ordered from most to least frequent as WithCount<T> wrapper objects. |
reverse() |
Reverse the order of the stream |
shuffle() |
Shuffle the stream into a random order using the platform default RandomGenerator |
shuffle(rg) |
Shuffle the stream into a random order using the specified RandomGenerator |
sizeExactly(n) |
Ensure the stream is exactly n elements long, or throw an IllegalStateException |
sizeGreaterThan(n) |
Ensure the stream is greater than n elements long, or throw an IllegalStateException |
sizeGreaterThanOrEqualTo(n) |
Ensure the stream is greater than or equal to n elements long, or throw an IllegalStateException |
sizeLessThan(n) |
Ensure the stream is less than n elements long, or throw an IllegalStateException |
sizeLessThanOrEqualTo(n) |
Ensure the stream is less than or equal to n elements long, or throw an IllegalStateException |
throttle(amount, duration) |
Limit stream elements to amount elements over duration , pausing until a new duration period starts |
withIndex() |
Maps all elements of the stream as-is along with their 0-based index |
zipWith(iterable) |
Creates a stream of Pair objects whose values come from the input stream and argument iterable |
zipWith(iterator) |
Creates a stream of Pair objects whose values come from the input stream and argument iterator |
zipWith(stream) |
Creates a stream of Pair objects whose values come from the input stream and argument stream |
zipWithNext() |
Creates a stream of List objects via a sliding window of width 2 and stepping 1 |
Function | Purpose |
---|---|
movingProduct(window) |
Create a moving product of BigDecimal values over the previous window values. |
movingProductBy(window, fn) |
Create a moving product of BigDecimal values over the previous window values, as mapped via fn . |
movingSum(window) |
Create a moving sum of BigDecimal values over the previous window values. |
movingSumBy(window, fn) |
Create a moving sum of BigDecimal values over the previous window values, as mapped via fn . |
runningPopulationStandardDeviation() |
Create a stream of BigDecimal objects representing the running population standard deviation. |
runningPopulationStandardDeviationBy(fn) |
Create a stream of BigDecimal objects as mapped from the input via fn , representing the running population standard deviation. |
runningProduct() |
Create a stream of BigDecimal objects representing the running product. |
runningProductBy(fn) |
Create a stream of BigDecimal objects as mapped from the input via fn , representing the running product. |
runningSampleStandardDeviation() |
Create a stream of BigDecimal objects representing the running sample standard deviation. |
runningSampleStandardDeviationBy(fn) |
Create a stream of BigDecimal objects as mapped from the input via fn , representing the running sample standard deviation. |
runningSum() |
Create a stream of BigDecimal objects representing the running sum. |
runningSumBy(fn) |
Create a stream of BigDecimal objects as mapped from the input via fn , representing the running sum. |
simpleMovingAverage(window) |
Create a moving average of BigDecimal values over the previous window values. See below for options. |
simpleMovingAverageBy(window, fn) |
Create a moving average of BigDecimal values over the previous window values, as mapped via fn . |
simpleRunningAverage() |
Create a running average of BigDecimal values. See below for options. |
simpleRunningAverageBy(fn) |
Create a running average of BigDecimal values as mapped via fn . |
Stream
.of("1.0", "2.0", "10.0")
.map(BigDecimal::new)
.gather(Gatherers4j.simpleRunningAverage())
.toList();
// [1, 1.5, 4.3333333333333333]
Stream
.of("1.0", "2.0", "10.0", "20.0", "30.0")
.map(BigDecimal::new)
.gather(Gatherers4j.simpleMovingAverage(2))
.toList();
// [1.5, 6, 15, 25]
Stream
.of("A", "A", "A", "B", "B", "C", "C", "D", "A", "B", "C")
.gather(Gatherers4j.dedupeConsecutive())
.toList();
// ["A", "B", "C", "D", "A", "B", "C"]
record Person(String firstName, String lastName) {}
Stream
.of(
new Person("Todd", "Ginsberg"),
new Person("Emma", "Ginsberg"),
new Person("Todd", "Smith")
)
.gather(Gatherers4j.dedupeConsecutiveBy(Person::lastName))
.toList();
// [Person("Todd", "Ginsberg"), Person("Todd", "Smith")]
record Person(String firstName, String lastName) {}
Stream
.of(
new Person("Todd", "Ginsberg"),
new Person("Emma", "Ginsberg"),
new Person("Todd", "Smith")
)
.gather(Gatherers4j.distinctBy(Person::firstName))
.toList();
// [Person("Todd", "Ginsberg"), Person("Emma", "Ginsberg")]
Stream.of("A", "B", "C", "D", "E")
.gather(Gatherers4j.dropLast(2))
.toList();
// ["A", "B", "C"]
// Good
Stream.of("A", "B", "C").gather(Gatherers4j.sizeExactly(3)).toList();
// ["A", "B", "C"]
// Bad
Stream.of("A").gather(Gatherers4j.sizeExactly(3)).toList();
// IllegalStateException
// Good
Stream.of("A", "B", "C").gather(Gatherers4j.sizeGreaterThan(2)).toList();
// ["A", "B", "C"]
// Bad
Stream.of("A", "B").gather(Gatherers4j.sizeGreaterThan(2)).toList();
// IllegalStateException
// Good
Stream.of("A", "B").gather(Gatherers4j.sizeGreaterThanOrEqualTo(2)).toList();
// ["A", "B"]
// Bad
Stream.of("A").gather(Gatherers4j.sizeGreaterThanOrEqualTo(2)).toList();
// IllegalStateException
// Good
Stream.of("A").gather(Gatherers4j.sizeLessThan(2)).toList();
// ["A"]
// Bad
Stream.of("A", "B").gather(Gatherers4j.sizeLessThan(2)).toList();
// IllegalStateException
// Good
Stream.of("A", "B").gather(Gatherers4j.sizeLessThanOrEqualTo(2)).toList();
// ["A", "B"]
// Bad
Stream.of("A", "B", "C").gather(Gatherers4j.sizeLessThanOrEqualTo(2)).toList();
// IllegalStateException
Stream.of("A", "B", "C", "D")
.gather(Gatherers4j.filterWithIndex((index, element) -> index % 2 == 0 || element.equals("D")))
.toList();
// ["A", "C", "D"]
Stream.of("A", "A", "B", "B", "B", "C")
.gather(Gatherers4j.grouping())
.toList();
// [["A", "A"], ["B", "B", "B"], ["C"]]
Stream.of("A", "B", "AA", "BB", "CC", "DDD")
.gather(Gatherers4j.groupingBy(String::length))
.toList();
// [["A", "B"], ["AA", "BB", "CC"], ["DDD"]]
final Stream<String> left = Stream.of("A", "B", "C");
final Stream<String> right = Stream.of("D", "E", "F");
left.gather(Gatherers4j.interleave(right)).toList();
// ["A", "D", "B", "E", "C", "F"]
Stream
.of("A", "B", "C", "D", "E", "F", "G")
.gather(Gatherers4j.last(3))
.toList();
// ["E", "F", "G"]
Stream.of("A", "A", "A", "B", "B" ,"C")
.gather(Gatherers4j.orderByFrequencyAscending())
.toList()
// [WithCount("C", 1), WithCount("B", 2), WithCount("C", 3) ]
Stream.of("A", "A", "A", "B", "B" ,"C")
.gather(Gatherers4j.orderByFrequencyDescending())
.toList()
// [WithCount("C", 3), WithCount("B", 2), WithCount("A", 1) ]
Stream
.of("A", "B", "C")
.gather(Gatherers4j.reverse())
.toList();
// ["C", "B", "A"]
Stream
.of("A", "B", "C")
.gather(Gatherers4j.withIndex())
.toList();
// [IndexedValue(0, "A"), IndexedValue(1, "B"), IndexedValue(2, "C")]
Stream
.of("A", "B", "C", "D" ,"E")
.gather(Gatherers4j.shuffle())
.toList();
// ex: ["B", "E", "A", "C", "D"] -- or some other randomly arranged stream
Stream
.of("A", "B", "C", "D" ,"E")
.gather(Gatherers4j.shuffle(RandomGenerator.of("someGenerator")))
.toList();
// ex: ["B", "E", "A", "C", "D"] -- or some other randomly arranged stream
Stream
.of("A", "B", "C")
.gather(Gatherers4j.throttle(2, Duration.ofSeconds(1))) // Two per second
.toList();
// ["A", "B", "C"]
^
|
+----------- Pause
The left and right streams can be of different types.
final Stream<String> left = Stream.of("A", "B", "C");
final Stream<Integer> right = Stream.of(1, 2, 3);
left.gather(Gatherers4j.zip(right)).toList();
// [Pair("A", 1), Pair("B", 2), Pair("C", 3)]
This converts a Stream<T>
to a Stream<List<T>>
Stream
.of("A", "B", "C", "D", "E")
.gather(Gatherers4j.zipWitNext())
.toList();
// [["A", "B"], ["B", "C"], ["C", "D"], ["D", "E"]]
Functions which modify output and are available on all BigDecimal
gatherers (simple average, moving average, and standard deviation).
Function | Purpose |
---|---|
treatNullAsZero() |
When an element in the Stream<BigDecimal> is null treat it as BigDecimal.ZERO instead of skipping it in the calculation. |
treatNullAs(BigDecimal) |
When an element in the Stream<BigDecimal> is null treat it as the BigDecimal value given instead of skipping it in the calculation. |
withMathContext(MathContext) |
Switch the MathContext for all calculations to the non-null MathContext given. The default is MathContext.DECIMAL64 . |
withOriginal() |
Include the original stream value in addition to the calculated value. |
Note that rounding mode, precision, and scale are derived from the MathContext
.
This example creates a stream of double
, converts each value to a BigDecmial
, and takes a simpleMovingAverage
over 10 trailing values.
It will includePartialValues
and sets the MathContext
to the values given. Additionally, nulls
are treated as zeros, and the calculated average is returned along with the original value.
someStreamOfBigDecimal()
.gather(Gatherers4j
.simpleMovingAverage(10)
.includePartialValues()
.withMathContext(MathContext.DECIMAL32)
.treatNullAsZero()
.withOriginal()
)
.toList();
// Example output:
[
WithOriginal[original=0.8462487, calculated=0.8462487],
WithOriginal[original=0.8923297, calculated=0.8692890],
WithOriginal[original=0.2556937, calculated=0.6647573],
WithOriginal[original=0.2901778, calculated=0.5711125],
WithOriginal[original=0.4945578, calculated=0.5558016],
WithOriginal[original=0.3173066, calculated=0.5160525],
WithOriginal[original=0.6377766, calculated=0.5334417],
WithOriginal[original=0.1729199, calculated=0.4883765],
WithOriginal[original=0.7408201, calculated=0.5164258],
WithOriginal[original=0.7169926, calculated=0.5364825],
WithOriginal[original=0.5174489, calculated=0.5036025],
WithOriginal[original=0.5895662, calculated=0.4733262],
WithOriginal[original=0.4458275, calculated=0.4923396],
// etc...
]
- Consider adding a gatherer if it cannot be implemented with
map
,filter
, or a collector without enclosing outside state. - Resist the temptation to add functions that only exist to provide an alias. They seem fun/handy but add surface area to the API and must be maintained forever.
- All features should be documented and tested.
Please feel free to file issues for change requests or bugs. If you would like to contribute new functionality, please contact me before starting work!
Copyright © 2024 by Todd Ginsberg