-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merging consecutive ttnn ToLayoutOps (#1552)
- Loading branch information
1 parent
f226c8c
commit d2cd95c
Showing
5 changed files
with
155 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
84 changes: 84 additions & 0 deletions
84
test/ttmlir/Dialect/TTNN/Canonicalizer/simple_to_layout_op_canonicalizer.mlir
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
// RUN: ttmlir-opt --canonicalize %s | FileCheck %s | ||
#device = #tt.device<workerGrid = #tt.grid<8x8, (d0, d1) -> (0, d0, d1)>, l1Map = (d0, d1)[s0, s1] -> (0, d0 floordiv s0, d1 floordiv s1, (d0 mod s0) * s1 + d1 mod s1), dramMap = (d0, d1)[s0, s1] -> (0, 0, ((((d0 floordiv s0) * 8 + d1 floordiv s1) * (s1 * s0) + (d0 mod s0) * s1 + d1 mod s1) floordiv 8192) mod 12, (((d0 floordiv s0) * 8 + d1 floordiv s1) * (s1 * s0) + (d0 mod s0) * s1 + d1 mod s1) floordiv 98304 + (((d0 floordiv s0) * 8 + d1 floordiv s1) * (s1 * s0) + (d0 mod s0) * s1 + d1 mod s1) mod 8192), meshShape = , chipIds = [0]> | ||
#dram = #ttnn.buffer_type<dram> | ||
#system_desc = #tt.system_desc<[{role = host, target_triple = "x86_64-pc-linux-gnu"}], [{arch = <wormhole_b0>, grid = 8x8, l1_size = 1499136, num_dram_channels = 12, dram_channel_size = 1073741824, noc_l1_address_align_bytes = 16, pcie_address_align_bytes = 32, noc_dram_address_align_bytes = 32, l1_unreserved_base = 1024, erisc_l1_unreserved_base = 1024, dram_unreserved_base = 1024, dram_unreserved_end = 1073741824, physical_cores = {worker = [ 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 1x0, 1x1, 1x2, 1x3, 1x4, 1x5, 1x6, 1x7, 2x0, 2x1, 2x2, 2x3, 2x4, 2x5, 2x6, 2x7, 3x0, 3x1, 3x2, 3x3, 3x4, 3x5, 3x6, 3x7, 4x0, 4x1, 4x2, 4x3, 4x4, 4x5, 4x6, 4x7, 5x0, 5x1, 5x2, 5x3, 5x4, 5x5, 5x6, 5x7, 6x0, 6x1, 6x2, 6x3, 6x4, 6x5, 6x6, 6x7, 7x0, 7x1, 7x2, 7x3, 7x4, 7x5, 7x6, 7x7] dram = [ 8x0, 9x0, 10x0, 8x1, 9x1, 10x1, 8x2, 9x2, 10x2, 8x3, 9x3, 10x3]}, supported_data_types = [<f32>, <f16>, <bf16>, <bfp_f8>, <bfp_bf8>, <bfp_f4>, <bfp_bf4>, <bfp_f2>, <bfp_bf2>, <u32>, <u16>, <u8>], supported_tile_sizes = [ 4x16, 16x16, 32x16, 4x32, 16x32, 32x32], num_cbs = 32}], [0], [3 : i32], [ 0x0x0x0]> | ||
#system_memory = #ttnn.buffer_type<system_memory> | ||
#ttnn_layout = #ttnn.ttnn_layout<(d0, d1) -> (d0, d1), <1x1>, memref<32x32xbf16, #system_memory>> | ||
#ttnn_layout1 = #ttnn.ttnn_layout<(d0, d1) -> (d0, d1), <1x1>, memref<1x1x!tt.tile<32x32, bf16>, #dram>, <interleaved>> | ||
#ttnn_layout2 = #ttnn.ttnn_layout<(d0, d1) -> (d0, d1), <1x1>, memref<32x32xbf16, #dram>, <interleaved>> | ||
#ttnn_layout3 = #ttnn.ttnn_layout<(d0, d1) -> (d0, d1), <1x1>, memref<1x1x!tt.tile<32x32, f32>, #dram>, <interleaved>> | ||
#ttnn_layout4 = #ttnn.ttnn_layout<(d0, d1) -> (d0, d1), <1x1>, memref<1x1x!tt.tile<32x32, f32>, #system_memory>> | ||
#ttnn_layout5 = #ttnn.ttnn_layout<(d0, d1) -> (d0, d1), <1x1>, memref<32x32xf32, #system_memory>> | ||
module attributes {tt.device = #device, tt.system_desc = #system_desc} { | ||
func.func @merge_to_layout_op_layout(%arg0: tensor<32x32xbf16, #ttnn_layout>) -> tensor<32x32xbf16, #ttnn_layout2> { | ||
%0 = "ttnn.get_device"() <{mesh_shape = #ttnn<mesh_shape 1x1>}> : () -> !tt.device<#device> | ||
// Verify that the to_layout op is canonicalized to a single to_layout op and the attributes are merged. | ||
// CHECK: "ttnn.to_layout"(%arg0, %0) | ||
// CHECK-SAME: dtype = #tt.supportedDataTypes<bf16> | ||
// CHECK-SAME: layout = #ttnn.layout<row_major> | ||
// CHECK-SAME: memory_config = #ttnn.memory_config<#dram, <<1x1>>, <interleaved>> | ||
// CHECK-SAME: -> tensor<32x32xbf16, #ttnn_layout1> | ||
// CHECK-NEXT: return | ||
%1 = "ttnn.to_layout"(%arg0, %0) <{dtype = #tt.supportedDataTypes<bf16>, layout = #ttnn.layout<tile>, memory_config = #ttnn.memory_config<#dram, <<1x1>>, <interleaved>>}> : (tensor<32x32xbf16, #ttnn_layout>, !tt.device<#device>) -> tensor<32x32xbf16, #ttnn_layout1> | ||
%2 = "ttnn.to_layout"(%1, %0) <{dtype = #tt.supportedDataTypes<bf16>, layout = #ttnn.layout<row_major>, memory_config = #ttnn.memory_config<#dram, <<1x1>>, <interleaved>>}> : (tensor<32x32xbf16, #ttnn_layout1>, !tt.device<#device>) -> tensor<32x32xbf16, #ttnn_layout2> | ||
return %2 : tensor<32x32xbf16, #ttnn_layout2> | ||
} | ||
|
||
func.func @merge_to_layout_op_data_type(%arg0: tensor<32x32xbf16, #ttnn_layout>) -> tensor<32x32xf32, #ttnn_layout3> { | ||
// Verify that the to_layout op is canonicalized to a single to_layout op and the attributes are merged. | ||
// CHECK: "ttnn.to_layout"(%arg0, %0) | ||
// CHECK-SAME: dtype = #tt.supportedDataTypes<f32> | ||
// CHECK-SAME: layout = #ttnn.layout<tile> | ||
// CHECK-SAME: memory_config = #ttnn.memory_config<#dram, <<1x1>>, <interleaved>> | ||
// CHECK-SAME: -> tensor<32x32xf32, #ttnn_layout2> | ||
// CHECK-NEXT: return | ||
%0 = "ttnn.get_device"() <{mesh_shape = #ttnn<mesh_shape 1x1>}> : () -> !tt.device<#device> | ||
%1 = "ttnn.to_layout"(%arg0, %0) <{dtype = #tt.supportedDataTypes<bf16>, layout = #ttnn.layout<tile>, memory_config = #ttnn.memory_config<#dram, <<1x1>>, <interleaved>>}> : (tensor<32x32xbf16, #ttnn_layout>, !tt.device<#device>) -> tensor<32x32xbf16, #ttnn_layout1> | ||
%2 = "ttnn.to_layout"(%1, %0) <{dtype = #tt.supportedDataTypes<f32>, layout = #ttnn.layout<tile>, memory_config = #ttnn.memory_config<#dram, <<1x1>>, <interleaved>>}> : (tensor<32x32xbf16, #ttnn_layout1>, !tt.device<#device>) -> tensor<32x32xf32, #ttnn_layout3> | ||
return %2 : tensor<32x32xf32, #ttnn_layout3> | ||
} | ||
|
||
func.func @merge_to_layout_op_memory_config(%arg0: tensor<32x32xbf16, #ttnn_layout>) -> tensor<32x32xbf16, #ttnn_layout4> { | ||
// Verify that the to_layout op is canonicalized to a single to_layout op and the attributes are merged. | ||
// CHECK: "ttnn.to_layout"(%arg0, %0) | ||
// CHECK-SAME: dtype = #tt.supportedDataTypes<bf16> | ||
// CHECK-SAME: layout = #ttnn.layout<tile> | ||
// CHECK-SAME: memory_config = #ttnn.memory_config<#system_memory, <<32x32>>> | ||
// CHECK-SAME: -> tensor<32x32xbf16, #ttnn_layout3> | ||
// CHECK-NEXT: return | ||
%0 = "ttnn.get_device"() <{mesh_shape = #ttnn<mesh_shape 1x1>}> : () -> !tt.device<#device> | ||
%1 = "ttnn.to_layout"(%arg0, %0) <{dtype = #tt.supportedDataTypes<bf16>, layout = #ttnn.layout<tile>, memory_config = #ttnn.memory_config<#dram, <<1x1>>, <interleaved>>}> : (tensor<32x32xbf16, #ttnn_layout>, !tt.device<#device>) -> tensor<32x32xbf16, #ttnn_layout1> | ||
%2 = "ttnn.to_layout"(%1, %0) <{dtype = #tt.supportedDataTypes<bf16>, layout = #ttnn.layout<tile>, memory_config = #ttnn.memory_config<#system_memory, <<32x32>>>}> : (tensor<32x32xbf16, #ttnn_layout1>, !tt.device<#device>) -> tensor<32x32xbf16, #ttnn_layout4> | ||
return %2 : tensor<32x32xbf16, #ttnn_layout4> | ||
} | ||
|
||
func.func @merge_to_layout_op_all(%arg0: tensor<32x32xbf16, #ttnn_layout>) -> tensor<32x32xf32, #ttnn_layout5> { | ||
// Verify that the to_layout op is canonicalized to a single to_layout op and the attributes are merged. | ||
// CHECK: "ttnn.to_layout"(%arg0, %0) | ||
// CHECK-SAME: dtype = #tt.supportedDataTypes<f32> | ||
// CHECK-SAME: layout = #ttnn.layout<row_major> | ||
// CHECK-SAME: memory_config = #ttnn.memory_config<#system_memory, <<32x32>>> | ||
// CHECK-SAME: -> tensor<32x32xf32, #ttnn_layout4> | ||
// CHECK-NEXT: return | ||
%0 = "ttnn.get_device"() <{mesh_shape = #ttnn<mesh_shape 1x1>}> : () -> !tt.device<#device> | ||
%1 = "ttnn.to_layout"(%arg0, %0) <{dtype = #tt.supportedDataTypes<bf16>, layout = #ttnn.layout<tile>, memory_config = #ttnn.memory_config<#dram, <<1x1>>, <interleaved>>}> : (tensor<32x32xbf16, #ttnn_layout>, !tt.device<#device>) -> tensor<32x32xbf16, #ttnn_layout1> | ||
%2 = "ttnn.to_layout"(%1, %0) <{dtype = #tt.supportedDataTypes<f32>, layout = #ttnn.layout<row_major>, memory_config = #ttnn.memory_config<#system_memory, <<32x32>>>}> : (tensor<32x32xbf16, #ttnn_layout1>, !tt.device<#device>) -> tensor<32x32xf32, #ttnn_layout5> | ||
return %2 : tensor<32x32xf32, #ttnn_layout5> | ||
} | ||
|
||
func.func @merge_to_layout_op_4x(%arg0: tensor<32x32xbf16, #ttnn_layout>) -> tensor<32x32xf32, #ttnn_layout5> { | ||
// Verify that the to_layout op is canonicalized to a single to_layout op and the attributes are merged. | ||
// CHECK: "ttnn.to_layout"(%arg0, %0) | ||
// CHECK-SAME: dtype = #tt.supportedDataTypes<f32> | ||
// CHECK-SAME: layout = #ttnn.layout<row_major> | ||
// CHECK-SAME: memory_config = #ttnn.memory_config<#system_memory, <<32x32>>> | ||
// CHECK-SAME: -> tensor<32x32xf32, #ttnn_layout4> | ||
// CHECK-NEXT: return | ||
%0 = "ttnn.get_device"() <{mesh_shape = #ttnn<mesh_shape 1x1>}> : () -> !tt.device<#device> | ||
%1 = "ttnn.to_layout"(%arg0, %0) <{dtype = #tt.supportedDataTypes<bf16>, layout = #ttnn.layout<tile>, memory_config = #ttnn.memory_config<#dram, <<1x1>>, <interleaved>>}> : (tensor<32x32xbf16, #ttnn_layout>, !tt.device<#device>) -> tensor<32x32xbf16, #ttnn_layout1> | ||
%2 = "ttnn.to_layout"(%1, %0) <{dtype = #tt.supportedDataTypes<f32>, layout = #ttnn.layout<row_major>, memory_config = #ttnn.memory_config<#system_memory, <<32x32>>>}> : (tensor<32x32xbf16, #ttnn_layout1>, !tt.device<#device>) -> tensor<32x32xf32, #ttnn_layout5> | ||
%3 = "ttnn.to_layout"(%2, %0) <{dtype = #tt.supportedDataTypes<f32>, layout = #ttnn.layout<tile>, memory_config = #ttnn.memory_config<#dram, <<1x1>>, <interleaved>>}> : (tensor<32x32xf32, #ttnn_layout5>, !tt.device<#device>) -> tensor<32x32xf32, #ttnn_layout3> | ||
%4 = "ttnn.to_layout"(%3, %0) <{dtype = #tt.supportedDataTypes<f32>, layout = #ttnn.layout<row_major>, memory_config = #ttnn.memory_config<#system_memory, <<32x32>>>}> : (tensor<32x32xf32, #ttnn_layout3>, !tt.device<#device>) -> tensor<32x32xf32, #ttnn_layout5> | ||
return %4 : tensor<32x32xf32, #ttnn_layout5> | ||
} | ||
} |