Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[core]Modularize notEqual. #3091

Merged
merged 3 commits into from
Apr 21, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions tfjs-core/src/kernel_names.ts
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,9 @@ export interface FusedBatchNormAttrs {
varianceEpsilon: number;
}

export const NotEqual = 'NotEqual';
export type NotEqualInputs = BinaryInputs;

export const SquaredDifference = 'SquaredDifference';
export type SquaredDifferenceInputs = BinaryInputs;

Expand Down
28 changes: 0 additions & 28 deletions tfjs-core/src/ops/compare.ts
Original file line number Diff line number Diff line change
Expand Up @@ -25,33 +25,6 @@ import {assertAndGetBroadcastShape} from './broadcast_util';
import {op} from './operation';
import {zerosLike} from './tensor_ops';

/**
* Returns the truth value of (a != b) element-wise. Supports broadcasting.
*
* We also expose `tf.notEqualStrict` which has the same signature as this op
* and asserts that `a` and `b` are the same shape (does not broadcast).
*
* ```js
* const a = tf.tensor1d([1, 2, 3]);
* const b = tf.tensor1d([0, 2, 3]);
*
* a.notEqual(b).print();
* ```
* @param a The first input tensor.
* @param b The second input tensor. Must have the same dtype as `a`.
*/
/** @doc {heading: 'Operations', subheading: 'Logical'} */
function notEqual_<T extends Tensor>(
a: Tensor|TensorLike, b: Tensor|TensorLike): T {
let $a = convertToTensor(a, 'a', 'notEqual');
let $b = convertToTensor(b, 'b', 'notEqual');
[$a, $b] = makeTypesMatch($a, $b);
assertAndGetBroadcastShape($a.shape, $b.shape);
return ENGINE.runKernelFunc(
backend => backend.notEqual($a, $b), {a: $a, b: $b},
null /* grad */, 'NotEqual') as T;
}

/**
* Strict version of `tf.notEqual` that forces `a` and `b` to be of the same
* shape.
Expand Down Expand Up @@ -273,5 +246,4 @@ export const less = op({less_});
export const lessEqual = op({lessEqual_});
export const lessEqualStrict = op({lessEqualStrict_});
export const lessStrict = op({lessStrict_});
export const notEqual = op({notEqual_});
export const notEqualStrict = op({notEqualStrict_});
273 changes: 0 additions & 273 deletions tfjs-core/src/ops/compare_ops_test.ts
Original file line number Diff line number Diff line change
Expand Up @@ -499,279 +499,6 @@ describeWithFlags('equalStrict', ALL_ENVS, () => {
});
});

describeWithFlags('notEqual', ALL_ENVS, () => {
it('Tensor1D - int32', async () => {
let a = tf.tensor1d([1, 4, 5], 'int32');
let b = tf.tensor1d([2, 3, 5], 'int32');

expectArraysClose(await tf.notEqual(a, b).data(), [1, 1, 0]);

a = tf.tensor1d([2, 2, 2], 'int32');
b = tf.tensor1d([2, 2, 2], 'int32');
expectArraysClose(await tf.notEqual(a, b).data(), [0, 0, 0]);

a = tf.tensor1d([0, 0], 'int32');
b = tf.tensor1d([3, 3], 'int32');
expectArraysClose(await tf.notEqual(a, b).data(), [1, 1]);
});
it('Tensor1D - float32', async () => {
let a = tf.tensor1d([1.1, 4.1, 5.1], 'float32');
let b = tf.tensor1d([2.2, 3.2, 5.1], 'float32');

expectArraysClose(await tf.notEqual(a, b).data(), [1, 1, 0]);

a = tf.tensor1d([2.31, 2.31, 2.31], 'float32');
b = tf.tensor1d([2.31, 2.31, 2.31], 'float32');
expectArraysClose(await tf.notEqual(a, b).data(), [0, 0, 0]);

a = tf.tensor1d([0.45, 0.123], 'float32');
b = tf.tensor1d([3.123, 3.321], 'float32');
expectArraysClose(await tf.notEqual(a, b).data(), [1, 1]);
});

it('upcasts when dtypes dont match', async () => {
const a = [1.1, 4.1, 5];
const b = [2.2, 3.2, 5];

let res =
tf.notEqual(tf.tensor(a, [3], 'float32'), tf.tensor(b, [3], 'int32'));
expect(res.dtype).toBe('bool');
expect(res.shape).toEqual([3]);
expectArraysClose(await res.data(), [1, 1, 0]);

res = tf.notEqual(tf.tensor(a, [3], 'int32'), tf.tensor(b, [3], 'bool'));
expect(res.dtype).toBe('bool');
expect(res.shape).toEqual([3]);
expectArraysClose(await res.data(), [0, 1, 1]);
});

it('TensorLike', async () => {
const a = [1.1, 4.1, 5.1];
const b = [2.2, 3.2, 5.1];

expectArraysClose(await tf.notEqual(a, b).data(), [1, 1, 0]);
});
it('TensorLike Chained', async () => {
const a = tf.tensor1d([1.1, 4.1, 5.1], 'float32');
const b = [2.2, 3.2, 5.1];

expectArraysClose(await a.notEqual(b).data(), [1, 1, 0]);
});
it('mismatched Tensor1D shapes - int32', () => {
const a = tf.tensor1d([1, 2], 'int32');
const b = tf.tensor1d([1, 2, 3], 'int32');
const f = () => {
tf.notEqual(a, b);
};
expect(f).toThrowError();
});
it('mismatched Tensor1D shapes - float32', () => {
const a = tf.tensor1d([1.1, 2.1], 'float32');
const b = tf.tensor1d([1.1, 2.1, 3.1], 'float32');
const f = () => {
tf.notEqual(a, b);
};
expect(f).toThrowError();
});
it('NaNs in Tensor1D - float32', async () => {
const a = tf.tensor1d([1.1, NaN, 2.1], 'float32');
const b = tf.tensor1d([2.1, 3.1, NaN], 'float32');
expectArraysClose(await tf.notEqual(a, b).data(), [1, 1, 1]);
});
it('works with NaNs', async () => {
const a = tf.tensor1d([2, 5, NaN]);
const b = tf.tensor1d([4, 5, -1]);

const res = tf.notEqual(a, b);
expect(res.dtype).toBe('bool');
expectArraysEqual(await res.data(), [1, 0, 1]);
});
it('scalar and 1D broadcast', async () => {
const a = tf.scalar(2);
const b = tf.tensor1d([1, 2, 3, 4, 5, 2]);
const res = tf.notEqual(a, b);
expect(res.dtype).toBe('bool');
expect(res.shape).toEqual([6]);
expectArraysEqual(await res.data(), [1, 0, 1, 1, 1, 0]);
});

// Tensor2D:
it('Tensor2D - int32', async () => {
let a = tf.tensor2d([[1, 4, 5], [8, 9, 12]], [2, 3], 'int32');
let b = tf.tensor2d([[2, 3, 6], [7, 10, 11]], [2, 3], 'int32');
expectArraysClose(await tf.notEqual(a, b).data(), [1, 1, 1, 1, 1, 1]);

a = tf.tensor2d([[0, 0], [1, 1]], [2, 2], 'int32');
b = tf.tensor2d([[0, 0], [1, 1]], [2, 2], 'int32');
expectArraysClose(await tf.notEqual(a, b).data(), [0, 0, 0, 0]);
});
it('Tensor2D - float32', async () => {
let a = tf.tensor2d([[1.1, 4.1, 5.1], [8.1, 9.1, 12.1]], [2, 3], 'float32');
let b =
tf.tensor2d([[2.1, 4.1, 5.1], [7.1, 10.1, 11.1]], [2, 3], 'float32');
expectArraysClose(await tf.notEqual(a, b).data(), [1, 0, 0, 1, 1, 1]);

a = tf.tensor2d([[0.2, 0.2], [1.2, 1.2]], [2, 2], 'float32');
b = tf.tensor2d([[0.2, 0.2], [1.2, 1.2]], [2, 2], 'float32');
expectArraysClose(await tf.notEqual(a, b).data(), [0, 0, 0, 0]);
});
it('broadcasting Tensor2D shapes - int32', async () => {
const a = tf.tensor2d([[3], [7]], [2, 1], 'int32');
const b = tf.tensor2d([[2, 3, 4], [7, 8, 9]], [2, 3], 'int32');
expectArraysClose(await tf.notEqual(a, b).data(), [1, 0, 1, 0, 1, 1]);
});
it('broadcasting Tensor2D shapes - float32', async () => {
const a = tf.tensor2d([[1.1], [7.1]], [2, 1], 'float32');
const b =
tf.tensor2d([[0.1, 1.1, 2.1], [7.1, 8.1, 9.1]], [2, 3], 'float32');
expectArraysClose(await tf.notEqual(a, b).data(), [1, 0, 1, 0, 1, 1]);
});
it('NaNs in Tensor2D - float32', async () => {
const a = tf.tensor2d([[1.1, NaN], [1.1, NaN]], [2, 2], 'float32');
const b = tf.tensor2d([[0.1, NaN], [1.1, NaN]], [2, 2], 'float32');
expectArraysClose(await tf.notEqual(a, b).data(), [1, 1, 0, 1]);
});
it('2D and scalar broadcast', async () => {
const a = tf.tensor2d([1, 2, 3, 2, 5, 6], [2, 3]);
const b = tf.scalar(2);
const res = tf.notEqual(a, b);
expect(res.dtype).toBe('bool');
expect(res.shape).toEqual([2, 3]);
expectArraysEqual(await res.data(), [1, 0, 1, 0, 1, 1]);
});
it('2D and 2D broadcast each with 1 dim', async () => {
const a = tf.tensor2d([1, 2, 5], [1, 3]);
const b = tf.tensor2d([5, 1], [2, 1]);
const res = tf.notEqual(a, b);
expect(res.dtype).toBe('bool');
expect(res.shape).toEqual([2, 3]);
expectArraysEqual(await res.data(), [1, 1, 0, 0, 1, 1]);
});

// Tensor3D:
it('Tensor3D - int32', async () => {
let a =
tf.tensor3d([[[1], [4], [5]], [[8], [9], [12]]], [2, 3, 1], 'int32');
let b =
tf.tensor3d([[[2], [3], [6]], [[7], [10], [12]]], [2, 3, 1], 'int32');
expectArraysClose(await tf.notEqual(a, b).data(), [1, 1, 1, 1, 1, 0]);

a = tf.tensor3d([[[0], [0], [0]], [[1], [1], [1]]], [2, 3, 1], 'int32');
b = tf.tensor3d([[[0], [0], [0]], [[1], [1], [1]]], [2, 3, 1], 'int32');
expectArraysClose(await tf.notEqual(a, b).data(), [0, 0, 0, 0, 0, 0]);
});
it('Tensor3D - float32', async () => {
let a = tf.tensor3d(
[[[1.1], [4.1], [5.1]], [[8.1], [9.1], [12.1]]], [2, 3, 1], 'float32');
let b = tf.tensor3d(
[[[2.1], [3.1], [6.1]], [[7.1], [10.1], [12.1]]], [2, 3, 1], 'float32');
expectArraysClose(await tf.notEqual(a, b).data(), [1, 1, 1, 1, 1, 0]);

a = tf.tensor3d(
[[[0.1], [0.1], [0.1]], [[1.1], [1.1], [1.1]]], [2, 3, 1], 'float32');
b = tf.tensor3d(
[[[0.1], [0.1], [0.1]], [[1.1], [1.1], [1.1]]], [2, 3, 1], 'float32');
expectArraysClose(await tf.notEqual(a, b).data(), [0, 0, 0, 0, 0, 0]);
});
it('broadcasting Tensor3D shapes - int32', async () => {
const a = tf.tensor3d(
[[[1, 0], [2, 3], [4, 5]], [[6, 7], [9, 8], [10, 11]]], [2, 3, 2],
'int32');
const b =
tf.tensor3d([[[1], [2], [3]], [[7], [10], [9]]], [2, 3, 1], 'int32');
expectArraysClose(
await tf.notEqual(a, b).data(), [0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1]);
});
it('broadcasting Tensor3D shapes - float32', async () => {
const a = tf.tensor3d(
[
[[1.1, 0.1], [2.1, 3.1], [4.1, 5.1]],
[[6.1, 7.1], [9.1, 8.1], [10.1, 11.1]]
],
[2, 3, 2], 'float32');
const b = tf.tensor3d(
[[[1.1], [2.1], [3.1]], [[7.1], [10.1], [9.1]]], [2, 3, 1], 'float32');
expectArraysClose(
await tf.notEqual(a, b).data(), [0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1]);
});
it('NaNs in Tensor3D - float32', async () => {
const a = tf.tensor3d(
[[[1.1], [NaN], [1.1]], [[0.1], [0.1], [0.1]]], [2, 3, 1], 'float32');
const b = tf.tensor3d(
[[[0.1], [0.1], [1.1]], [[1.1], [0.1], [NaN]]], [2, 3, 1], 'float32');
expectArraysClose(await tf.notEqual(a, b).data(), [1, 1, 0, 1, 0, 1]);
});
it('3D and scalar', async () => {
const a = tf.tensor3d([1, 2, 3, 4, 5, -1], [2, 3, 1]);
const b = tf.scalar(-1);
const res = tf.notEqual(a, b);
expect(res.dtype).toBe('bool');
expect(res.shape).toEqual([2, 3, 1]);
expectArraysEqual(await res.data(), [1, 1, 1, 1, 1, 0]);
});

// Tensor4D:
it('Tensor4D - int32', async () => {
let a = tf.tensor4d([1, 4, 5, 8], [2, 2, 1, 1], 'int32');
let b = tf.tensor4d([2, 3, 6, 8], [2, 2, 1, 1], 'int32');
expectArraysClose(await tf.notEqual(a, b).data(), [1, 1, 1, 0]);

a = tf.tensor4d([0, 1, 2, 3], [2, 2, 1, 1], 'int32');
b = tf.tensor4d([0, 1, 2, 3], [2, 2, 1, 1], 'int32');
expectArraysClose(await tf.notEqual(a, b).data(), [0, 0, 0, 0]);

a = tf.tensor4d([1, 1, 1, 1], [2, 2, 1, 1], 'int32');
b = tf.tensor4d([2, 2, 2, 2], [2, 2, 1, 1], 'int32');
expectArraysClose(await tf.notEqual(a, b).data(), [1, 1, 1, 1]);
});
it('Tensor4D - float32', async () => {
let a = tf.tensor4d([1.1, 4.1, 5.1, 8.1], [2, 2, 1, 1], 'float32');
let b = tf.tensor4d([2.1, 3.1, 6.1, 8.1], [2, 2, 1, 1], 'float32');
expectArraysClose(await tf.notEqual(a, b).data(), [1, 1, 1, 0]);

a = tf.tensor4d([0.1, 1.1, 2.2, 3.3], [2, 2, 1, 1], 'float32');
b = tf.tensor4d([0.1, 1.1, 2.2, 3.3], [2, 2, 1, 1], 'float32');
expectArraysClose(await tf.notEqual(a, b).data(), [0, 0, 0, 0]);

a = tf.tensor4d([0.1, 0.1, 0.1, 0.1], [2, 2, 1, 1], 'float32');
b = tf.tensor4d([1.1, 1.1, 1.1, 1.1], [2, 2, 1, 1], 'float32');
expectArraysClose(await tf.notEqual(a, b).data(), [1, 1, 1, 1]);
});
it('broadcasting Tensor4D shapes - int32', async () => {
const a = tf.tensor4d([1, 2, 5, 9], [2, 2, 1, 1], 'int32');
const b = tf.tensor4d(
[[[[1, 2]], [[3, 4]]], [[[5, 6]], [[7, 8]]]], [2, 2, 1, 2], 'int32');
expectArraysClose(await tf.notEqual(a, b).data(), [0, 1, 1, 1, 0, 1, 1, 1]);
});
it('broadcasting Tensor4D shapes - float32', async () => {
const a = tf.tensor4d([1.1, 2.1, 5.1, 9.1], [2, 2, 1, 1], 'float32');
const b = tf.tensor4d(
[[[[1.1, 2.1]], [[3.1, 4.1]]], [[[5.1, 6.1]], [[7.1, 8.1]]]],
[2, 2, 1, 2], 'float32');
expectArraysClose(await tf.notEqual(a, b).data(), [0, 1, 1, 1, 0, 1, 1, 1]);
});
it('NaNs in Tensor4D - float32', async () => {
const a = tf.tensor4d([1.1, NaN, 1.1, 0.1], [2, 2, 1, 1], 'float32');
const b = tf.tensor4d([0.1, 1.1, 1.1, NaN], [2, 2, 1, 1], 'float32');
expectArraysClose(await tf.notEqual(a, b).data(), [1, 1, 0, 1]);
});

it('throws when passed a as a non-tensor', () => {
expect(() => tf.notEqual({} as tf.Tensor, tf.scalar(1)))
.toThrowError(/Argument 'a' passed to 'notEqual' must be a Tensor/);
});
it('throws when passed b as a non-tensor', () => {
expect(() => tf.notEqual(tf.scalar(1), {} as tf.Tensor))
.toThrowError(/Argument 'b' passed to 'notEqual' must be a Tensor/);
});

it('accepts a tensor-like object', async () => {
const a = tf.tensor1d([1, 4, 5], 'int32');
const b = tf.tensor1d([2, 3, 5], 'int32');
expectArraysClose(await tf.notEqual(a, b).data(), [1, 1, 0]);
});
});

describeWithFlags('notEqualStrict', ALL_ENVS, () => {
it('Tensor1D - int32', async () => {
let a = tf.tensor1d([1, 4, 5], 'int32');
Expand Down
61 changes: 61 additions & 0 deletions tfjs-core/src/ops/not_equal.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {ENGINE, ForwardFunc} from '../engine';
import {NotEqual, NotEqualInputs} from '../kernel_names';
import {Tensor} from '../tensor';
import {NamedTensorMap} from '../tensor_types';
import {makeTypesMatch} from '../tensor_util';
import {convertToTensor} from '../tensor_util_env';
import {TensorLike} from '../types';

import {assertAndGetBroadcastShape} from './broadcast_util';
import {op} from './operation';

/**
* Returns the truth value of (a != b) element-wise. Supports broadcasting.
*
* We also expose `tf.notEqualStrict` which has the same signature as this op
* and asserts that `a` and `b` are the same shape (does not broadcast).
*
* ```js
* const a = tf.tensor1d([1, 2, 3]);
* const b = tf.tensor1d([0, 2, 3]);
*
* a.notEqual(b).print();
* ```
* @param a The first input tensor.
* @param b The second input tensor. Must have the same dtype as `a`.
*/
/** @doc {heading: 'Operations', subheading: 'Logical'} */
function notEqual_<T extends Tensor>(
a: Tensor|TensorLike, b: Tensor|TensorLike): T {
let $a = convertToTensor(a, 'a', 'notEqual');
let $b = convertToTensor(b, 'b', 'notEqual');
[$a, $b] = makeTypesMatch($a, $b);

assertAndGetBroadcastShape($a.shape, $b.shape);

const forward: ForwardFunc<Tensor> = (backend) => backend.notEqual($a, $b);

const inputs: NotEqualInputs = {a: $a, b: $b};

return ENGINE.runKernelFunc(
forward, inputs as {} as NamedTensorMap, null /* grad */,
NotEqual) as T;
}

export const notEqual = op({notEqual_});
Loading