Skip to content

Commit

Permalink
deploy: f72d161
Browse files Browse the repository at this point in the history
  • Loading branch information
PhilipMay committed Dec 12, 2023
1 parent 34cee65 commit 0272c01
Showing 1 changed file with 6 additions and 6 deletions.
12 changes: 6 additions & 6 deletions api-reference/optuna.html
Original file line number Diff line number Diff line change
Expand Up @@ -109,13 +109,13 @@
<dl class="py class">
<dt class="sig sig-object py" id="mltb2.optuna.SignificanceRepeatedTrainingPruner">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">mltb2.optuna.</span></span><span class="sig-name descname"><span class="pre">SignificanceRepeatedTrainingPruner</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">alpha</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.12)"><span class="pre">float</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0.1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_warmup_steps</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><span class="pre">int</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/mltb2/optuna.html#SignificanceRepeatedTrainingPruner"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#mltb2.optuna.SignificanceRepeatedTrainingPruner" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://optuna.readthedocs.io/en/stable/reference/generated/optuna.pruners.BasePruner.html#optuna.pruners.BasePruner" title="(in Optuna v3.4.0)"><code class="xref py py-class docutils literal notranslate"><span class="pre">BasePruner</span></code></a></p>
<dd><p>Bases: <a class="reference external" href="https://optuna.readthedocs.io/en/stable/reference/generated/optuna.pruners.BasePruner.html#optuna.pruners.BasePruner" title="(in Optuna v3.5.0)"><code class="xref py py-class docutils literal notranslate"><span class="pre">BasePruner</span></code></a></p>
<p>Optuna pruner which uses statistical significance as an heuristic for decision-making.</p>
<p>This is an Optuna <a class="reference external" href="https://optuna.readthedocs.io/en/stable/reference/pruners.html#module-optuna.pruners" title="(in Optuna v3.4.0)"><code class="xref py py-mod docutils literal notranslate"><span class="pre">Pruner</span></code></a> which uses statistical significance as
<p>This is an Optuna <a class="reference external" href="https://optuna.readthedocs.io/en/stable/reference/pruners.html#module-optuna.pruners" title="(in Optuna v3.5.0)"><code class="xref py py-mod docutils literal notranslate"><span class="pre">Pruner</span></code></a> which uses statistical significance as
an heuristic for decision-making. It prunes repeated trainings like in a cross validation.
As the test method a <a class="reference external" href="https://en.wikipedia.org/wiki/Student's_t-test">t-test</a> is used.
Our experiments have shown that an <code class="docutils literal notranslate"><span class="pre">aplha</span></code> value between 0.3 and 0.4 is reasonable.</p>
<p><a class="reference external" href="https://optuna.readthedocs.io/en/stable/reference/pruners.html#module-optuna.pruners" title="(in Optuna v3.4.0)"><code class="xref py py-mod docutils literal notranslate"><span class="pre">Optuna's</span> <span class="pre">standard</span> <span class="pre">pruners</span></code></a> assume that you only adjust the model once
<p><a class="reference external" href="https://optuna.readthedocs.io/en/stable/reference/pruners.html#module-optuna.pruners" title="(in Optuna v3.5.0)"><code class="xref py py-mod docutils literal notranslate"><span class="pre">Optuna's</span> <span class="pre">standard</span> <span class="pre">pruners</span></code></a> assume that you only adjust the model once
per hyperparameter set. Those pruners work on the basis of intermediate results. For example,
once per epoch. In contrast, this pruner does not work on intermediate results but on the
results of a cross validation or more precisely the results of the individual folds.</p>
Expand Down Expand Up @@ -199,16 +199,16 @@
</dl>
<dl class="py method">
<dt class="sig sig-object py" id="mltb2.optuna.SignificanceRepeatedTrainingPruner.prune">
<span class="sig-name descname"><span class="pre">prune</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">study</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.Study.html#optuna.study.Study" title="(in Optuna v3.4.0)"><span class="pre">Study</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">trial</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://optuna.readthedocs.io/en/stable/reference/generated/optuna.trial.FrozenTrial.html#optuna.trial.FrozenTrial" title="(in Optuna v3.4.0)"><span class="pre">FrozenTrial</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span></span><a class="reference internal" href="../_modules/mltb2/optuna.html#SignificanceRepeatedTrainingPruner.prune"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#mltb2.optuna.SignificanceRepeatedTrainingPruner.prune" title="Permalink to this definition"></a></dt>
<span class="sig-name descname"><span class="pre">prune</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">study</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.Study.html#optuna.study.Study" title="(in Optuna v3.5.0)"><span class="pre">Study</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">trial</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://optuna.readthedocs.io/en/stable/reference/generated/optuna.trial.FrozenTrial.html#optuna.trial.FrozenTrial" title="(in Optuna v3.5.0)"><span class="pre">FrozenTrial</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span></span><a class="reference internal" href="../_modules/mltb2/optuna.html#SignificanceRepeatedTrainingPruner.prune"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#mltb2.optuna.SignificanceRepeatedTrainingPruner.prune" title="Permalink to this definition"></a></dt>
<dd><p>Judge whether the trial should be pruned based on the reported values.</p>
<p>Note that this method is not supposed to be called by library users. Instead,
<code class="xref py py-func docutils literal notranslate"><span class="pre">optuna.trial.Trial.report()</span></code> and <code class="xref py py-func docutils literal notranslate"><span class="pre">optuna.trial.Trial.should_prune()</span></code> provide
user interfaces to implement pruning mechanism in an objective function.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>study</strong> (<a class="reference external" href="https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.Study.html#optuna.study.Study" title="(in Optuna v3.4.0)"><em>Study</em></a>) – Study object of the target study.</p></li>
<li><p><strong>trial</strong> (<a class="reference external" href="https://optuna.readthedocs.io/en/stable/reference/generated/optuna.trial.FrozenTrial.html#optuna.trial.FrozenTrial" title="(in Optuna v3.4.0)"><em>FrozenTrial</em></a>) – FrozenTrial object of the target trial.
<li><p><strong>study</strong> (<a class="reference external" href="https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.Study.html#optuna.study.Study" title="(in Optuna v3.5.0)"><em>Study</em></a>) – Study object of the target study.</p></li>
<li><p><strong>trial</strong> (<a class="reference external" href="https://optuna.readthedocs.io/en/stable/reference/generated/optuna.trial.FrozenTrial.html#optuna.trial.FrozenTrial" title="(in Optuna v3.5.0)"><em>FrozenTrial</em></a>) – FrozenTrial object of the target trial.
Take a copy before modifying this object.</p></li>
</ul>
</dd>
Expand Down

0 comments on commit 0272c01

Please sign in to comment.