Skip to content

This repository is the unofficial implementation of "Unsupervised HDR Imaging: What Can Be Learned from a Single 8-bit Video?"(https://arxiv.org/abs/2202.05522) using PyTorch.

License

Notifications You must be signed in to change notification settings

tattaka/unsupervised-hdr-imaging

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Unsupervised HDR Imaging

This repository is the unofficial implementation of "Unsupervised HDR Imaging: What Can Be Learned from a Single 8-bit Video?" using PyTorch.
The main idea of this paper is to assume that a single video contains a variety of exposures and train to map from higher to lower exposures.

Different the original paper, it does not implementation sampling of frames during training and uses avg+max pooling instead of mixed pooling.

Demo

-4 fstop -2 fstop 0 fstop 2 fstop 4 fstop
Ground Truth 4fstop_low_gt.jpg 2fstop_low_gt.jpg ground_truth.jpg 2fstop_high_gt.jpg 4fstop_high_gt.jpg
Predict 4fstop_low_predict.jpg 2fstop_low_predict.jpg opencv_reconstructed.jpg 2fstop_high_predict.jpg 4fstop_high_predict.jpg
diff 4fstop_low_diff.jpg 2fstop_low_diff.jpg hdr_diff.jpg 2fstop_high_diff.jpg 4fstop_high_diff.jpg

These images are generated using example/christmas_tree.ipynb.
0 fstop(Predict) reconstructed by MergeMertens method.

Usage

from unsupervised_hdr import UnsupervisedHDRModel
model = UnsupervisedHDRModel(
    video_path =VIDEO_PATH, # supporing only mp4 format
    encoder_lr = 1e-4,
    decoder_lr = 1e-4,
    num_worker = 1,
    device_ids = 0, # int (device_id) or None(using all gpu) or list(device_id array, ex. [0, 1])
    output_dir = LOGDIR_PATH)
model.fit(max_epoch=64, batch_size=1)
out = model.predict(
    frame_idx=None,  # None(all frames) or int(frame_idx) or list(frame_idx array, ex. [0, 100, 200])
    batch_size=1)
# out: {
# "hdr_image": reconstracted hdr image using MergeMertens of opencv(frames, h, w, c), 
# "exposure_list": [-4fstop, -2fstop, 0fstop(input), 2fstop, 4fstop]
# }

TODO

  • Multi GPU training
  • Ealry stopping
  • Dealing with the artifacts by convolution(other decoder)
  • More data augmentation(ex. scale, crop)
  • Support other pooling for default model(supported avg+max pooling only now)
  • Support imagenet pretrain timm encoder
    • Freeze batch normalization layer
    • Input image size must be a multiple of 16
  • Support other pretrain method(ex. simsiam)
  • Evaluate transfer learning

Requirement

  • PyTorch>=1.9.0
  • timm>=0.5.4
  • tqdm>=4.61.2

Installation

Clone:
$ git clone https://github.com/tattaka/unsupervised-hdr-imaging.git

Using pip:
$ cd unsupervised-hdr-imaging
$ pip install .

License

This repository is under MIT license.

About

This repository is the unofficial implementation of "Unsupervised HDR Imaging: What Can Be Learned from a Single 8-bit Video?"(https://arxiv.org/abs/2202.05522) using PyTorch.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published