forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[GNA] Depth-wise separable convolution support (openvinotoolkit#7281)
* [GNA] Add support for DWSC, other fixes and code refactoring. * [GNA] Change supported layout to NHWC * [GNA] Detect bias const only on second position, move verification of dwsc to matcher
- Loading branch information
Showing
9 changed files
with
311 additions
and
84 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
207 changes: 207 additions & 0 deletions
207
inference-engine/src/gna_plugin/transformations/convert_dwsc_to_scaleshifts.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,207 @@ | ||
// Copyright (C) 2021 Intel Corporation | ||
// SPDX-License-Identifier: Apache-2.0 | ||
// | ||
|
||
#include <openvino/cc/ngraph/itt.hpp> | ||
|
||
#include "transformations/convert_dwsc_to_scaleshifts.hpp" | ||
|
||
#include <ngraph/opsets/opset7.hpp> | ||
#include <ngraph/pattern/op/wrap_type.hpp> | ||
#include <ngraph/pattern/op/or.hpp> | ||
#include <transformations/utils/utils.hpp> | ||
#include <ngraph/rt_info.hpp> | ||
#include <ie_common.h> | ||
#include "utils/transformation_helper.hpp" | ||
|
||
|
||
using namespace GNAPluginNS; | ||
|
||
NGRAPH_RTTI_DEFINITION(ConvertDWSCToScaleShifts, "ConvertDWSCToScaleShifts", 0); | ||
|
||
static std::shared_ptr<ngraph::Node> DecomposeDWSC(std::shared_ptr<ngraph::opset7::GroupConvolution> dwsc, | ||
std::shared_ptr<ngraph::opset7::Constant> bias_const, std::shared_ptr<ngraph::opset7::FakeQuantize> fq_bias, | ||
std::shared_ptr<ngraph::opset7::Reshape> flat_input_plane, std::shared_ptr<ngraph::Node> flat_filters_plane) { | ||
std::shared_ptr<ngraph::opset7::Constant> const_zero_padding; | ||
std::shared_ptr<ngraph::Node> reshaped_bias; | ||
ngraph::OutputVector output_chunks; | ||
auto input_channel_count = dwsc->get_input_shape(0)[1]; | ||
auto input_width = dwsc->get_input_shape(0)[3]; | ||
auto output_width = dwsc->get_output_shape(0)[3]; | ||
auto filter_width = dwsc->get_input_shape(1)[4]; | ||
auto pads_begin = dwsc->get_pads_begin()[1]; | ||
auto stride_width = dwsc->get_strides()[1]; | ||
auto dilation_width = dwsc->get_dilations()[1]; | ||
|
||
// Constant with zero padding | ||
if (pads_begin) { | ||
const_zero_padding = std::make_shared<ngraph::opset7::Constant>(dwsc->get_element_type(), ngraph::Shape{1, input_channel_count}, 0); | ||
copy_runtime_info(dwsc, const_zero_padding); | ||
} | ||
|
||
// Reshape bias const | ||
if (bias_const) { | ||
auto bias_size = shape_size(bias_const->get_shape()); | ||
reshaped_bias = ngraph::op::util::make_try_fold<ngraph::opset7::Reshape>(bias_const, | ||
ngraph::opset7::Constant::create(ngraph::element::i64, ngraph::Shape{2}, ngraph::Shape{1, bias_size}), false); | ||
} | ||
|
||
// Move filter over input performing multiplication and addition (scaleshift), take padding, stride, dilation and bias into account | ||
for (int32_t input_position = -pads_begin, o = 0; o < output_width; input_position += stride_width, o++) { | ||
std::shared_ptr<ngraph::Node> previous_layer_output, last_layer_output; | ||
int32_t filter_end = input_position + filter_width * dilation_width; | ||
bool first = true; | ||
|
||
filter_end = filter_end < input_width ? filter_end : input_width; | ||
|
||
for (int32_t filter_pos = input_position, filter_idx = 0; filter_pos < filter_end; filter_pos += dilation_width, filter_idx++) { | ||
if (filter_pos >= 0) { | ||
auto conv_input_slice = FlatCrop(flat_input_plane, filter_pos * input_channel_count, input_channel_count); | ||
auto conv_filter_slice = FlatCrop(flat_filters_plane, filter_idx * input_channel_count, input_channel_count); | ||
|
||
if (first) { | ||
first = false; | ||
previous_layer_output = std::make_shared<ngraph::opset7::Multiply>(conv_input_slice, conv_filter_slice); | ||
copy_runtime_info(dwsc, previous_layer_output); | ||
if (bias_const) { | ||
previous_layer_output = std::make_shared<ngraph::opset7::Add>(previous_layer_output, reshaped_bias); | ||
copy_runtime_info(dwsc, previous_layer_output); | ||
previous_layer_output = InsertFQLayer(fq_bias, previous_layer_output); | ||
} | ||
last_layer_output = previous_layer_output; | ||
} else { | ||
last_layer_output = std::make_shared<ngraph::opset7::Multiply>(conv_input_slice, conv_filter_slice); | ||
copy_runtime_info(dwsc, last_layer_output); | ||
last_layer_output = std::make_shared<ngraph::opset7::Add>(last_layer_output, previous_layer_output); | ||
copy_runtime_info(dwsc, last_layer_output); | ||
previous_layer_output = last_layer_output; | ||
} | ||
} | ||
} | ||
|
||
if (!last_layer_output) { | ||
IE_ASSERT(const_zero_padding); | ||
last_layer_output = const_zero_padding; | ||
} | ||
|
||
output_chunks.push_back(last_layer_output); | ||
} | ||
|
||
// Concat is only needed when output width > 1 | ||
if (output_chunks.size() > 1) { | ||
auto concat_output_plane = std::make_shared<ngraph::opset7::Concat>(output_chunks, 0); | ||
copy_runtime_info(dwsc, concat_output_plane); | ||
return concat_output_plane; | ||
} | ||
|
||
return output_chunks[0].get_node_shared_ptr(); | ||
} | ||
|
||
static bool Convert(std::shared_ptr<ngraph::Node> leading_transpose, | ||
std::shared_ptr<ngraph::Node> dwsc_node, | ||
std::shared_ptr<ngraph::Node> bias_const_node, | ||
std::shared_ptr<ngraph::Node> fq_bias_node, | ||
std::shared_ptr<ngraph::Node> trailing_transpose) { | ||
auto dwsc = std::dynamic_pointer_cast<ngraph::opset7::GroupConvolution>(dwsc_node); | ||
auto bias_const = std::dynamic_pointer_cast<ngraph::opset7::Constant>(bias_const_node); | ||
auto fq_bias = std::dynamic_pointer_cast<ngraph::opset7::FakeQuantize>(fq_bias_node); | ||
|
||
// We are looking for Transpose(NHWC->NCHW) => GroupConv => Transpose(NCHW->NHWC) | ||
// or similar cases, so required network must be in NHWC order like in TF | ||
if (!TransposeOrderMatches(std::dynamic_pointer_cast<ngraph::opset7::Transpose>(leading_transpose), {0, 3, 1, 2})) | ||
return false; | ||
|
||
if (!TransposeOrderMatches(std::dynamic_pointer_cast<ngraph::opset7::Transpose>(trailing_transpose), {0, 2, 3, 1})) | ||
return false; | ||
|
||
auto output_channel_count = dwsc->get_output_shape(0)[1]; | ||
auto output_width = dwsc->get_output_shape(0)[3]; | ||
|
||
// Prepare flat input data | ||
auto flat_input_plane = std::make_shared<ngraph::opset7::Reshape>(leading_transpose->input_value(0), | ||
ngraph::opset7::Constant::create(ngraph::element::i64, ngraph::Shape{2}, | ||
ngraph::Shape{1, shape_size(dwsc->input_value(0).get_shape())}), false); | ||
|
||
// Prepare flat filter data | ||
auto filters_const = std::dynamic_pointer_cast<ngraph::Node>(dwsc->get_input_node_shared_ptr(1)); | ||
auto filters_size = shape_size(filters_const->get_shape()); | ||
|
||
auto transposed_filters_const = ngraph::op::util::make_try_fold<ngraph::opset7::Transpose>(filters_const, | ||
ngraph::opset7::Constant::create(ngraph::element::i64, ngraph::Shape{5}, ngraph::Shape{4, 1, 2, 3, 0})); | ||
|
||
auto flat_filters_plane = ngraph::op::util::make_try_fold<ngraph::opset7::Reshape>(transposed_filters_const, | ||
ngraph::opset7::Constant::create(ngraph::element::i64, ngraph::Shape{2}, ngraph::Shape{1, filters_size}), false); | ||
|
||
copy_runtime_info(dwsc, {flat_input_plane, transposed_filters_const, flat_filters_plane}); | ||
|
||
// Convert DWSC to a set of diagonal layers | ||
auto output_plane = DecomposeDWSC(dwsc, bias_const, fq_bias, flat_input_plane, flat_filters_plane); | ||
|
||
// Restore the original output shape | ||
auto result = std::make_shared<ngraph::opset7::Reshape>(output_plane, | ||
ngraph::opset7::Constant::create(ngraph::element::i64, ngraph::Shape{4}, | ||
ngraph::Shape{1, output_channel_count, 1, output_width}), false); | ||
copy_runtime_info(dwsc, result); | ||
|
||
// We need to put here the original Group Convolution layer name, so the new layer output can be used as a network result | ||
std::string result_name = trailing_transpose->get_friendly_name(); | ||
replace_node(trailing_transpose, result); | ||
result->set_friendly_name(result_name); | ||
|
||
return true; | ||
} | ||
|
||
static bool VerifyDWSC(const ngraph::Output<ngraph::Node>& output) { | ||
auto dwsc = output.get_node(); | ||
|
||
// Verify it's a 1D convolution | ||
// Verify that filter group count == input channel count | ||
// Verify that per group filter output channel count == 1 | ||
if (!consumers_and_rank(1, 4)(output) || | ||
dwsc->get_input_shape(1)[3] != 1 || dwsc->get_input_shape(0)[2] != 1 || dwsc->get_output_shape(0)[2] != 1 || | ||
dwsc->get_input_shape(1)[0] != dwsc->get_input_shape(0)[1] || | ||
dwsc->get_input_shape(1)[1] != 1) | ||
return false; | ||
|
||
return true; | ||
} | ||
|
||
ConvertDWSCToScaleShifts::ConvertDWSCToScaleShifts() { | ||
MATCHER_SCOPE(ConvertDWSCToScaleShifts); | ||
|
||
auto const_input = ngraph::pattern::wrap_type<ngraph::opset7::Constant>(); | ||
auto leading_transpose = ngraph::pattern::wrap_type<ngraph::opset7::Transpose>({ngraph::pattern::any_input(), const_input}, | ||
consumers_and_rank(1, 4)); | ||
auto filters_const_fq = ngraph::pattern::wrap_type<ngraph::opset7::Constant>(ngraph::pattern::rank_equals(4)); | ||
auto fq_filters_const = ngraph::pattern::wrap_type<ngraph::opset7::FakeQuantize>({filters_const_fq, const_input, const_input, const_input, const_input}, | ||
consumers_and_rank(1, 4)); | ||
auto reshape_filters_const = ngraph::pattern::wrap_type<ngraph::opset7::Reshape>({fq_filters_const, const_input}, ngraph::pattern::rank_equals(5)); | ||
auto filters_const = ngraph::pattern::wrap_type<ngraph::opset7::Constant>(ngraph::pattern::rank_equals(5)); | ||
auto dwsc_filters = std::make_shared<ngraph::pattern::op::Or>(ngraph::OutputVector{filters_const, reshape_filters_const }); | ||
auto dwsc = ngraph::pattern::wrap_type<ngraph::opset7::GroupConvolution>({leading_transpose, dwsc_filters}, VerifyDWSC); | ||
auto bias = ngraph::pattern::wrap_type<ngraph::opset7::Add>({dwsc, const_input}); | ||
auto fq_bias = ngraph::pattern::wrap_type<ngraph::opset7::FakeQuantize>({bias, const_input, const_input, const_input, const_input}, | ||
consumers_and_rank(1, 4)); | ||
auto transpose_input = std::make_shared<ngraph::pattern::op::Or>(ngraph::OutputVector{dwsc, bias, fq_bias}); | ||
auto trailing_transpose = ngraph::pattern::wrap_type<ngraph::opset7::Transpose>({transpose_input, const_input}, consumers_and_rank(1, 4)); | ||
|
||
ngraph::matcher_pass_callback callback = [=](ngraph::pattern::Matcher& m) { | ||
const auto& pattern_map = m.get_pattern_value_map(); | ||
auto bias_it = pattern_map.find(bias); | ||
auto bias_node = (bias_it == std::end(pattern_map) ? nullptr : bias_it->second.get_node_shared_ptr()); | ||
std::shared_ptr<ngraph::Node> bias_const = nullptr; | ||
|
||
if (bias_node && (bias_const = VerifyBiasGetConst(pattern_map.at(dwsc).get_node_shared_ptr(), bias_node)) == nullptr) | ||
return false; | ||
|
||
auto fq_bias_it = pattern_map.find(fq_bias); | ||
auto fq_bias_node = (fq_bias_it == std::end(pattern_map) ? nullptr : fq_bias_it->second.get_node_shared_ptr()); | ||
|
||
return Convert(pattern_map.at(leading_transpose).get_node_shared_ptr(), pattern_map.at(dwsc).get_node_shared_ptr(), | ||
bias_const, fq_bias_node, | ||
pattern_map.at(trailing_transpose).get_node_shared_ptr()); | ||
}; | ||
|
||
auto m = std::make_shared<ngraph::pattern::Matcher>(trailing_transpose, matcher_name); | ||
this->register_matcher(m, callback); | ||
} |
21 changes: 21 additions & 0 deletions
21
inference-engine/src/gna_plugin/transformations/convert_dwsc_to_scaleshifts.hpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
// Copyright (C) 2021 Intel Corporation | ||
// SPDX-License-Identifier: Apache-2.0 | ||
// | ||
|
||
#pragma once | ||
|
||
#include <ngraph/pass/graph_rewrite.hpp> | ||
|
||
namespace GNAPluginNS { | ||
|
||
/** | ||
* @brief Convert a depthwise separable convolution (represented by a GroupConvolution) to a set of ScaleShift layers (MatMul + Add) | ||
* Additionally supported are bias and fake quantize layers. | ||
*/ | ||
class ConvertDWSCToScaleShifts : public ngraph::pass::MatcherPass { | ||
public: | ||
NGRAPH_RTTI_DECLARATION; | ||
ConvertDWSCToScaleShifts(); | ||
}; | ||
|
||
} // namespace GNAPluginNS |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.