Skip to content

synthetic-tensors/MapLight-TDC

 
 

Repository files navigation

ADMET properties From MapLight TDC

The following models have weights in the weights folder. Regression models also have a scaler applied which is pickled and must be used to unscale each model's inference.

An example of making a prediction using the loaded model weights and scaler for each checkpoint:

model = cb.CatBoostRegressor(**params)
model.load_model(os.path.join('saved_weights',f"{name}"))
with open('saved_weights/{name}_scaler.pk','rb') as f:
    Y_scaler = pickle.load(f)
y_pred_test = Y_scaler.inverse_transform(model.predict(X_test)).reshape(-1)

Classification models have a threshold. The optimal threshold for maximum balanced accuracy is given below in metrics. AN example of using it for a given checkpoint is:

model = cb.CatBoostClassifier(**params)
model.load_model(os.path.join('saved_weights',f"{name}"))
y_pred_test = model.predict_proba(X_test)[:,1]
return (y_pred_test>optimal_th).astype(int)

Regression Models:

mae spearman
caco2_wang 0.27223 0.85793
lipophilicity_astrazeneca 0.516466 0.831155
solubility_aqsoldb 0.800037 0.866275
ppbr_az 7.47501 0.712983
vdss_lombardo 1.68696 0.717743
half_life_obach 7.45942 0.558608
clearance_hepatocyte_az 30.2953 0.502324
clearance_microsome_az 19.954 0.653661
ld50_zhu 0.629854 0.609439

Classification Models:

aupr auroc balacc optimal_th
bioavailability_ma 0.901531 0.727303 0.699577 0.828497
hia_hou 0.996875 0.989712 0.938856 0.977044
pgp_broccatelli 0.941559 0.938816 0.880885 0.414728
bbb_martins 0.963123 0.913618 0.84018 0.865201
cyp2c9_veith 0.859974 0.931277 0.860052 0.353022
cyp2d6_veith 0.791154 0.924813 0.839032 0.16205
cyp3a4_veith 0.915578 0.931526 0.858056 0.403832
cyp2c9_substrate_carbonmangels 0.432612 0.654368 0.670762 0.14914
cyp2d6_substrate_carbonmangels 0.709706 0.802199 0.742048 0.289062
cyp3a4_substrate_carbonmangels 0.68598 0.641501 0.653162 0.534332
herg 0.949307 0.881443 0.813093 0.689034
ames 0.906939 0.869584 0.758416 0.488999
dili 0.903321 0.909565 0.783887 0.528811
tox21-ar-bla-agonist-p1 0.68322 0.946455 0.833223 0.0318758
tox21-ar-bla-antagonist-p1 0.659154 0.907511 0.811298 0.120367
tox21-elg1-luc-agonist-p1 0.383235 0.830848 0.730952 0.0202452
tox21-er-bla-agonist-p2 0.610997 0.897829 0.800731 0.0706903
tox21-er-bla-antagonist-p1 0.469869 0.889797 0.80674 0.0881795
tox21-erb-bla-antagonist-p1 0.686544 0.911833 0.829754 0.126843
tox21-erb-bla-p1 0.591014 0.908448 0.847735 0.0194611
tox21-err-p1_agonist 0.545362 0.912336 0.848086 0.0293485
tox21-fxr-bla-agonist-p2 0.118553 0.828313 0.708267 0.019386
tox21-fxr-bla-antagonist-p1 0.624882 0.940786 0.872408 0.0697105
tox21-pgc-err-p1_agonist 0.54195 0.915476 0.837401 0.0291077
tox21-ppard-bla-agonist-p1 0.194658 0.89306 0.840848 0.0189974
tox21-ppard-bla-antagonist-p1 0.55482 0.900251 0.841596 0.0503388
tox21-pparg-bla-agonist-p1 0.253157 0.777719 0.700157 0.0411015
tox21-pparg-bla-antagonist-p1 0.553884 0.892889 0.809238 0.078308
tox21-pr-bla-agonist-p1 0.79252 0.907427 0.880763 0.0200623
tox21-pr-bla-antagonist-p1 0.732251 0.920156 0.844547 0.16993
tox21-rt-viability-hek293-p1_glo 8 hr 0.603564 0.92003 0.852772 0.102452
tox21-rt-viability-hek293-p1_glo 40 hr 0.660304 0.896794 0.837891 0.142036
tox21-rt-viability-hek293-p1_flor 16 hr 0.378712 0.825721 0.792897 0.0308674
tox21-rt-viability-hek293-p1_flor 24 hr 0.493268 0.833737 0.768325 0.0488585
tox21-rt-viability-hek293-p1_flor 32 hr 0.511791 0.850615 0.779082 0.0599788
tox21-rt-viability-hek293-p1_flor 40 hr 0.492634 0.845957 0.760244 0.0812956
tox21-rt-viability-hek293-p1_flor 0 hr 0.128291 0.74392 0.549118 0.0197711
tox21-rt-viability-hek293-p1_flor 8 hr 0.4032 0.797755 0.772996 0.0298919
tox21-rt-viability-hek293-p1_glo 0 hr 0.328627 0.860411 0.790658 0.0096723
tox21-rt-viability-hek293-p1_glo 16 hr 0.604654 0.89483 0.815798 0.108697
tox21-rt-viability-hek293-p1_glo 24 hr 0.676462 0.890974 0.833918 0.120451
tox21-rt-viability-hek293-p1_glo 32 hr 0.674068 0.899056 0.831646 0.131387
tox21-rxr-bla-agonist-p1 0.283895 0.768877 0.668002 0.0369999
tox21-sbe-bla-agonist-p1 0.368894 0.975641 0.695192 0.0096832
tox21-sbe-bla-antagonist-p1 0.607067 0.907174 0.852524 0.100327
tox21-trhr-hek293-p1_agonist 0.226899 0.778906 0.72887 0.00980396
tox21-trhr-hek293-p1_antagonist 0.30715 0.913514 0.812196 0.00931424
tox21-tshr-agonist-p1 0.327101 0.871387 0.755946 0.0482734
tox21-tshr-antagonist-p1 0.343284 0.883851 0.826512 0.0288489
tox21-tshr-wt-p1 0.667834 0.696517 0.831734 0.00969448
tox21-vdr-bla-agonist-p1 0.379164 0.869008 0.640051 0.0128356
tox21-vdr-bla-antagonist-p1 0.506907 0.932286 0.873052 0.0596334

arXiv Open In Colab Powered by RDKit

This repository contains the source code for MapLight's Therapeutics Data Commons (TDC) ADMET Benchmark Group submission.

Installation

This codebase describes MapLight's two submissions to the TDC leaderboards:

  1. MapLight model (submission.ipynb): CatBoost gradient boosted decision trees with ECFP, Avalon, and ErG fingerprints, as well as 200 physicochemical descriptors. Runnable on Colab.

  2. MapLight + GNN model (submission_gnn.ipynb): the same as the MapLight model with graph isomorphism network (GIN) supervised masking fingerprints from molfeat. WARNING: Not runnable on Colab becuase of this issue.

Both notebooks will install all dependencies in a new Python environment with JupyterLab:

# Create an environment for this project
mamba create -n maplight python=3.10 -y && mamba activate maplight

mamba install jupyterlab

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.2%
  • Python 0.8%