forked from SWI-Prolog/swish
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
160 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
/* | ||
Stochastic logic program defining a distribution over simple sentences with number agreement. The sentences are defined using a definite clause grammars. | ||
Recall that in SLPs, the probabilities of all rules with the same head predicate sum to one and define a mutually exclusive choice on how to continue a proof. | ||
Furthermore, repeated choices are independent, i.e., no stochastic memoization | ||
Form https://dtai.cs.kuleuven.be/problog/tutorial/various/06_slp.html#stochastic-logic-programs | ||
*/ | ||
:- use_module(library(mcintyre)). | ||
|
||
:- if(current_predicate(use_rendering/1)). | ||
:- use_rendering(c3). | ||
:- endif. | ||
:- mc. | ||
:- begin_lpad. | ||
% a stochastic logic program defining a distribution over simple sentences with number agreement | ||
% recall that in SLPs, the probabilities of all rules with the same head predicate sum to one and define a mutually exclusive choice on how to continue a proof | ||
% furthermore, repeated choices are independent, i.e., no stochastic memoization | ||
% | ||
% 1.0 : s(List) :- | ||
% s(List,[]). | ||
% | ||
% 1.0 : s(List,Rest) :- | ||
% np(List,Mid,Number), | ||
% vp(Mid,Rest,Number). | ||
% | ||
% 0.4 : np(List,Rest,sing) :- | ||
% det(List,Mid,sing), | ||
% n(Mid,Rest,sing). | ||
% 0.4 : np(List,Rest,pl) :- | ||
% n(List,Rest,pl). | ||
% 0.2 : np(List,Rest,pl) :- | ||
% det(List,Mid,pl), | ||
% n(Mid,Rest,pl). | ||
% | ||
% 1.0 : vp(List,Rest,Num) :- | ||
% v(List,Mid,Num), | ||
% np(Mid,Rest,_). | ||
% | ||
% 1/3 : det([the|L],L,pl). | ||
% 1/3 : det([the|L],L,sing). | ||
% 1/3 : det([a|L],L,sing). | ||
% | ||
% 0.25 : n([cat|L],L,sing). | ||
% 0.15 : n([mouse|L],L,sing). | ||
% 0.1 : n([dog|L],L,sing). | ||
% 0.25 : n([cats|L],L,pl). | ||
% 0.15 : n([mice|L],L,pl). | ||
% 0.1 : n([dogs|L],L,pl). | ||
% | ||
% 0.35 : v([chases|L],L,sing). | ||
% 0.15 : v([sees|L],L,sing). | ||
% 0.2 : v([chase|L],L,pl). | ||
% 0.3 : v([see|L],L,pl). | ||
|
||
% use counter-based trial IDs for each head predicate with a stochastic choice, and explicit split rather than difference lists | ||
|
||
% s(Num) -> np(Num),vp(Num) | ||
s(W,Num,np(N,NN),det(D,DD),n(M,MM),v(V,VV)) :- | ||
split(W,W1,W2), | ||
np(W1,Num,np(N,NI),det(D,DI),n(M,MI),v(V,VI)), | ||
vp(W2,Num,np(NI,NN),det(DI,DD),n(MI,MM),v(VI,VV)). | ||
|
||
% np(Num) -> 0.4:: det(sg),n(sg) | 0.4:: n(pl) | 0.2::det(pl),n(pl) | ||
np_to(N,sg_dn):0.4; np_to(N,pl_n):0.4; np_to(N,pl_dn):0.2. | ||
np(W,sg,np(N,NN),det(D,DD),n(M,MM),v(V,VV)) :- | ||
np_to(N,sg_dn), | ||
NI is N+1, | ||
split(W,W1,W2), | ||
det(W1,sg,np(NI,N1),det(D,D1),n(M,M1),v(V,V1)), | ||
n(W2,sg,np(N1,NN),det(D1,DD),n(M1,MM),v(V1,VV)). | ||
np(W,pl,np(N,NN),det(D,DD),n(M,MM),v(V,VV)) :- | ||
np_to(N,pl_n), | ||
NI is N+1, | ||
n(W,pl,np(NI,NN),det(D,DD),n(M,MM),v(V,VV)). | ||
np(W,pl,np(N,NN),det(D,DD),n(M,MM),v(V,VV)) :- | ||
np_to(N,pl_dn), | ||
NI is N+1, | ||
split(W,W1,W2), | ||
det(W1,pl,np(NI,N1),det(D,D1),n(M,M1),v(V,V1)), | ||
n(W2,pl,np(N1,NN),det(D1,DD),n(M1,MM),v(V1,VV)). | ||
|
||
% vp(Num) -> v(Num), np(_) | ||
vp(W,Num,np(N,NN),det(D,DD),n(M,MM),v(V,VV)) :- | ||
split(W,W1,W2), | ||
v(W1,Num,np(N,NI),det(D,DI),n(M,MI),v(V,VI)), | ||
np(W2,_,np(NI,NN),det(DI,DD),n(MI,MM),v(VI,VV)). | ||
|
||
% det(Num) -> 1/3 the(pl) | 1/3 the(sg) | 1/3 a(sg) | ||
det_to(N,the_pl):1/3; det_to(N,the_sg):1/3; det_to(N,a_sg):1/3. | ||
det([the],pl,np(N,N),det(D,DD),n(M,M),v(V,V)) :- | ||
det_to(D,the_pl), DD is D+1. | ||
det([the],sg,np(N,N),det(D,DD),n(M,M),v(V,V)) :- | ||
det_to(D,the_sg), DD is D+1. | ||
det([a],sg,np(N,N),det(D,DD),n(M,M),v(V,V)) :- | ||
det_to(D,a_sg), DD is D+1. | ||
|
||
% n(Num) -> 0.25 cat(sg) | 0.15 mouse(sg) | 0.1 dog(sg) | 0.25 cats(pl) | 0.15 mice(pl) | 0.1 dogs(pl) | ||
n_to(N,cat_sg):0.25; n_to(N, mouse_sg):0.15 ; n_to(N, dog_sg):0.1 ; n_to(N, cats_pl):0.25 ; n_to(N, mice_pl):0.15 ; n_to(N, dogs_pl):0.1. | ||
%n_to(N,cat_sg):0.5; n_to(N, mouse_sg):0.3 ; n_to(N, dog_sg):0.2. | ||
% n_to(N, cats_pl):0.5 ; n_to(N, mice_pl):0.3 ; n_to(N, dogs_pl):0.2. | ||
n([cat],sg,np(N,N),det(D,D),n(M,MM),v(V,V)) :- | ||
n_to(M,cat_sg), MM is M+1. | ||
n([mouse],sg,np(N,N),det(D,D),n(M,MM),v(V,V)) :- | ||
n_to(M,mouse_sg), MM is M+1. | ||
n([dog],sg,np(N,N),det(D,D),n(M,MM),v(V,V)) :- | ||
n_to(M,dog_sg), MM is M+1. | ||
n([cats],pl,np(N,N),det(D,D),n(M,MM),v(V,V)) :- | ||
n_to(M,cats_pl), MM is M+1. | ||
n([mice],pl,np(N,N),det(D,D),n(M,MM),v(V,V)) :- | ||
n_to(M,mice_pl), MM is M+1. | ||
n([dogs],pl,np(N,N),det(D,D),n(M,MM),v(V,V)) :- | ||
n_to(M,dogs_pl), MM is M+1. | ||
|
||
% v(Num) -> 0.35 chases(sg) | 0.15 sees(sg) | 0.2 chase(pl) | 0.3 see(pl) | ||
v_to(N, chases_sg):0.35 ; v_to(N, sees_sg):0.15 ; v_to(N, chase_pl):0.2 ; v_to(N, see_pl):0.3. | ||
v([chases],sg,np(N,N),det(D,D),n(M,M),v(V,VV)) :- | ||
v_to(V,chases_sg), VV is V+1. | ||
v([sees],sg,np(N,N),det(D,D),n(M,M),v(V,VV)) :- | ||
v_to(V,sees_sg), VV is V+1. | ||
v([chase],pl,np(N,N),det(D,D),n(M,M),v(V,VV)) :- | ||
v_to(V,chase_pl), VV is V+1. | ||
v([see],pl,np(N,N),det(D,D),n(M,M),v(V,VV)) :- | ||
v_to(V,see_pl), VV is V+1. | ||
|
||
% initialize all counters to 0, and leave number open | ||
word(L) :- s(L,_Num,np(0,_),det(0,_),n(0,_),v(0,_)). | ||
|
||
% split(+T,-P,-S) splits the list T into two non-empty sublists P(refix) and S(uffix) | ||
% note that T needs to have fixed length for this to terminate | ||
split([A,B|C],[A],[B|C]). | ||
split([A,B|C],[A|D],E) :- | ||
split([B|C],D,E). | ||
|
||
% compute posteriors of correct sentences (or sample a correct sentence) | ||
% we need to fix the length of the list to ensure split/3 has a finite number of solutions | ||
query(X):-X=[_,_,_,_,_],word(X). | ||
query(X):-X=[_,_,_,_],word(X). | ||
query(X):-X=[_,_,_],word(X). | ||
evidence(is_word). | ||
|
||
% this grammar can only produce words of length 3/4/5 | ||
% the probability of getting a word is 0.067222 | ||
is_word :- word([_,_,_]). | ||
is_word :- word([_,_,_,_]). | ||
is_word :- word([_,_,_,_,_]). | ||
|
||
:- end_lpad. | ||
|
||
|
||
/** <examples> | ||
?- mc_mh_sample_arg(word([A,B,C]),word([_,_,_]),10,1,[A,B,C],V). | ||
% take 10 samples of 3 token words given that the lenght of the word is 3 | ||
?- mc_mh_sample_arg_bar(word([A,B,C]),word([_,_,_]),10,1,[A,B,C],V). | ||
% take 10 samples of 3 token words given that the lenght of the word is 3 | ||
% and draw a bar chart of the results | ||
?- mc_mh_sample_arg(query(X),is_word,10,1,X,V). | ||
% take 10 samples of 3, 4 or 5 token words given that the lenght of the word is | ||
% 3, 5 or 5 | ||
% | ||
*/ | ||
|