-
Notifications
You must be signed in to change notification settings - Fork 26
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #177 from sunya-ch/exporter
add missing writer file
- Loading branch information
Showing
2 changed files
with
167 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,166 @@ | ||
import os | ||
import sys | ||
|
||
import pandas as pd | ||
|
||
util_path = os.path.join(os.path.dirname(__file__), '..', '..', 'util') | ||
sys.path.append(util_path) | ||
|
||
from loader import load_json, get_machine_path, default_init_model_url, get_url, trainers_with_weight | ||
from config import ERROR_KEY | ||
from train_types import ModelOutputType, FeatureGroup | ||
|
||
def write_markdown(markdown_filepath, markdown_content): | ||
|
||
try: | ||
with open(markdown_filepath, "w", encoding="utf-8") as markdown_file: | ||
# Write the Markdown content to the file | ||
markdown_file.write(markdown_content) | ||
print(f"Markdown file '{markdown_filepath}' has been created successfully.") | ||
except IOError as e: | ||
print(f"Cannot write '{markdown_filepath}': {e}") | ||
|
||
|
||
# Function to convert a dictionary to a Markdown table | ||
def dict_to_markdown_table(data): | ||
# Get the column headers | ||
headers = list(data.keys()) | ||
|
||
# Initialize the Markdown table with headers | ||
markdown_table = "| " + " | ".join(headers) + " |\n" | ||
markdown_table += "| " + " | ".join(["---"] * len(headers)) + " |\n" | ||
|
||
# Iterate through the dictionary and add rows to the table | ||
for i in range(len(data[headers[0]])): | ||
row = "| " + " | ".join([str(data[key][i]) for key in headers]) + " |\n" | ||
markdown_table += row | ||
|
||
return markdown_table | ||
|
||
def format_cpe_content(data): | ||
spec = data["spec"] | ||
iterations = spec["iterationSpec"]["iterations"] | ||
items = dict() | ||
for iteration in iterations: | ||
items[iteration["name"]] = iteration["values"] | ||
df = pd.DataFrame(items) | ||
content = dict_to_markdown_table(df) | ||
content += "\nrepetition: {}".format(spec["repetition"]) | ||
return content | ||
|
||
def format_trainer(trainers): | ||
trainer_content = "" | ||
for trainer in trainers.split(","): | ||
trainer_content += " - {}\n".format(trainer) | ||
return trainer_content | ||
|
||
def _version_path(machine_path): | ||
return os.path.join(machine_path, "..") | ||
|
||
def generate_pipeline_page(data_path, machine_path, train_args, skip_if_exist=True): | ||
doc_path = os.path.join(_version_path(machine_path), ".doc") | ||
pipeline_name = train_args["pipeline_name"] | ||
markdown_filename = "{}.md".format(pipeline_name) | ||
markdown_filepath = os.path.join(doc_path, markdown_filename) | ||
if skip_if_exist and os.path.exists(markdown_filepath): | ||
print(f"Markdown file '{markdown_filepath}' already exists.") | ||
return | ||
|
||
workload_content = "" | ||
inputs = train_args["input"].split(",") | ||
for input in inputs: | ||
benchmark_name = "".join(input.split("_")[0:-2]) | ||
data = load_json(data_path, benchmark_name) | ||
|
||
workload_content += """ | ||
### {} | ||
<-- put workload description here --> | ||
<details> | ||
{} | ||
</details> | ||
""".format(benchmark_name, format_cpe_content(data)) | ||
|
||
|
||
markdown_content = """ | ||
# Pipeline {} | ||
## Description | ||
<-- put pipeline description here --> | ||
## Components | ||
- **Extractor:** {} | ||
- **Isolator:** {} | ||
- **AbsPower Trainers:** | ||
{} | ||
- **DynPower Trainers:** | ||
{} | ||
## Workload information | ||
{} | ||
""".format(pipeline_name, train_args["extractor"], train_args["isolator"], format_trainer(train_args["abs_trainers"]), " (same as AbsPower Trainers)" if train_args["abs_trainers"] == train_args["dyn_trainers"] else train_args["dyn_trainers"], workload_content) | ||
|
||
write_markdown(markdown_filepath, markdown_content) | ||
|
||
def model_url(version, machine_id, pipeline_name, energy_source, output_type, feature_group, model_name, weight): | ||
machine_path = get_machine_path(default_init_model_url, version, machine_id, assure=False) | ||
model_url = get_url(ModelOutputType[output_type], FeatureGroup[feature_group], model_name=model_name, model_topurl=machine_path, energy_source=energy_source, pipeline_name=pipeline_name, weight=weight) | ||
return model_url | ||
|
||
def format_error_content(train_args, mae_validated_df_map, weight): | ||
content = "" | ||
for energy_source, mae_validated_df_outputs in mae_validated_df_map.items(): | ||
for output_type, mae_validated_df in mae_validated_df_outputs.items(): | ||
content += "### {} {} model\n\n".format(energy_source, output_type) | ||
df = mae_validated_df | ||
if weight: | ||
df = mae_validated_df[mae_validated_df["model_name"].str.contains('|'.join(trainers_with_weight))] | ||
items = [] | ||
min_err_rows = df.loc[df.groupby(["feature_group"])[ERROR_KEY].idxmin()] | ||
for _, row in min_err_rows.iterrows(): | ||
item = dict() | ||
feature_group = row["feature_group"] | ||
model_name = row["model_name"] | ||
item["url"] = model_url(train_args["version"], train_args["machine_id"], train_args["pipeline_name"], energy_source, output_type, feature_group, model_name, weight) | ||
item[ERROR_KEY] = "{:.2f}".format(row[ERROR_KEY]) | ||
item["feature group"] = feature_group | ||
item["model name"] = model_name | ||
items += [item] | ||
print_df = pd.DataFrame(items, columns=["feature group", "model name", ERROR_KEY, "url"]) | ||
content += dict_to_markdown_table(print_df.sort_values(by=["feature group"])) | ||
return content | ||
|
||
def generate_validation_results(machine_path, train_args, mae_validated_df_map): | ||
markdown_filepath = os.path.join(machine_path, "README.md") | ||
|
||
markdown_content = "# Validation results\n\n" | ||
markdown_content += "## With local estimator\n\n" | ||
markdown_content += format_error_content(train_args, mae_validated_df_map, weight=True) | ||
markdown_content += "## With sidecar estimator\n\n" | ||
markdown_content += format_error_content(train_args, mae_validated_df_map, weight=False) | ||
write_markdown(markdown_filepath, markdown_content) | ||
|
||
def append_version_readme(machine_path, train_args, pipeline_metadata, include_raw): | ||
readme_path = os.path.join(_version_path(machine_path), "README.md") | ||
|
||
content_to_append = "{0}|[{1}](./.doc/{1}.md)|{2}|{3}|{4}|[{5}](https://github.com/{5})|[link](./{6}/README.md)\n".format(train_args["machine_id"], \ | ||
train_args["pipeline_name"], \ | ||
"✓" if include_raw else "X", \ | ||
pipeline_metadata["collect_time"], \ | ||
pipeline_metadata["last_update_time"], \ | ||
pipeline_metadata["publisher"],\ | ||
train_args["machine_id"]\ | ||
) | ||
|
||
with open(readme_path, 'a') as file: | ||
file.write(content_to_append) |