Skip to content

Commit

Permalink
Added RGB example from core
Browse files Browse the repository at this point in the history
  • Loading branch information
nabobalis committed Feb 28, 2023
1 parent 0b4ba2b commit ac13b06
Show file tree
Hide file tree
Showing 2 changed files with 64 additions and 0 deletions.
1 change: 1 addition & 0 deletions changelog/1.doc.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
Added a tutorial (:ref:`sphx_glr_generated_gallery_rgb_composite.py`) demonstrates how to create an RGB image with three different maps.
63 changes: 63 additions & 0 deletions examples/rgb_composite.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
"""
=============================
Making an RGB composite image
=============================
This example shows the process required to create an RGB composite image
of three AIA images at different wavelengths. To read more about the
algorithm used in this example, see this
`Astropy tutorial <https://docs.astropy.org/en/stable/visualization/rgb.html>`__.
"""
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D

import sunpy.data.sample
from astropy.visualization import make_lupton_rgb
from sunpy.map import Map

from sunkit_image.enhance import mgn

###############################################################################
# We will use three AIA images from the sample data at the following
# wavelengths: 171, 193, and 211 Angstroms. The 171 image shows the quiet
# solar corona, 193 shows a hotter region of the corona, and 211 shows
# active magnetic regions in the corona.

maps = Map(sunpy.data.sample.AIA_171_IMAGE, sunpy.data.sample.AIA_193_IMAGE, sunpy.data.sample.AIA_211_IMAGE)

###############################################################################
# Before the images are assigned colors and combined, they need to be
# normalized so that features in each wavelength are visible in the combined
# image. We will apply multi-scale Gaussian normalization using
# `sunkit_image.enhance.mgn` to each map and then create the rgb composite.
# The ``k`` parameter is a scaling factor applied to the normalized image. A
# value of 5 produces sharper details in the transformed image. In the
# `~astropy.visualization.make_lupton_rgb` function, ``Q`` is a softening
# parameter which we set to 0 and ``stretch`` controls the linear stretch
# applied to the combined image.

maps_mgn = [Map(mgn(m.data, k=5), m.meta) for m in maps]
im_rgb = make_lupton_rgb(maps_mgn[0].data, maps_mgn[1].data, maps_mgn[2].data, Q=0, stretch=1)

###############################################################################
# The output of the `astropy.visualization.make_lupton_rgb` algorithm is not
# a Map, but instead an image. So, we need to create a WCS Axes using one of
# original maps and manually set the label. In the first step below, we grab
# the Set1 qualitative colormap to apply to the custom legend lines.

cmap = plt.cm.Set1
custom_lines = [
Line2D([0], [0], color=cmap(0), lw=4),
Line2D([0], [0], color=cmap(2), lw=4),
Line2D([0], [0], color=cmap(1), lw=4),
]
fig = plt.figure()
ax = fig.add_subplot(111, projection=maps[0].wcs)
im = ax.imshow(im_rgb)
lon, lat = ax.coords
lon.set_axislabel("Helioprojective Longitude")
lat.set_axislabel("Helioprojective Latitude")
ax.legend(custom_lines, ["AIA 171", "AIA 193", "AIA 211"])
ax.set_title("AIA RGB Composite")

plt.show()

0 comments on commit ac13b06

Please sign in to comment.