Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support plotting to use pixel_edges instead of pixel_values #176

Merged
merged 23 commits into from
Jul 31, 2019
Merged
Show file tree
Hide file tree
Changes from 16 commits
Commits
Show all changes
23 commits
Select commit Hold shift + click to select a range
b072595
Added edges parameter for getting pixel_edges instead of pixel_values
yashrsharma44 May 23, 2019
b124e6e
Corrected some changes of the plotting test
yashrsharma44 May 25, 2019
09a2621
Added a helper function to get pixel_edges from pixel_values
yashrsharma44 May 25, 2019
65ccdb5
Added changes for supporting new API for sunpy plotting
yashrsharma44 May 25, 2019
2de3013
PEP8 fixes
yashrsharma44 May 25, 2019
b4103db
Removed stray comments
yashrsharma44 May 25, 2019
2184fb8
Added changes to the internal API of sequence plotting
yashrsharma44 Jun 11, 2019
f7982e2
Changed the helper function `_get_extra_coord_edges` to work with `nd…
yashrsharma44 Jun 11, 2019
d7638e1
Modified the `test_sequence_plotting.py` to work with the new API cha…
yashrsharma44 Jun 11, 2019
3639eb0
Added the test which was creating the issue
yashrsharma44 Jun 11, 2019
7f256a5
Removed a portion of code which was using 1D axis_ranges instead of d…
yashrsharma44 Jul 9, 2019
9948a5a
Added some test changes
yashrsharma44 Jul 9, 2019
0642569
Changed the expected values to a more appropriate one
yashrsharma44 Jul 9, 2019
4c197d7
PEP8 fixes
yashrsharma44 Jul 9, 2019
2af9fff
Added a changelog
yashrsharma44 Jul 15, 2019
90dc63c
Corrected the shape of axes_ranges for 1D_animate_cube
yashrsharma44 Jul 25, 2019
3e09f6a
Edited the comments for reducing the dimensions for plot_axis_indices
yashrsharma44 Jul 26, 2019
fe975c4
Uncommented some parts of seq_plotting
yashrsharma44 Jul 26, 2019
21eb3ea
PEP8 fixes
yashrsharma44 Jul 26, 2019
c5197df
Removed redundant part from _get_extra_coord_edges
yashrsharma44 Jul 30, 2019
c1416fe
Corrected the name axes_coordinates
yashrsharma44 Jul 31, 2019
ff51ffd
Typo Error
yashrsharma44 Jul 31, 2019
644fb72
Minor changes in test cases
yashrsharma44 Jul 31, 2019
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions changelog/176.bugfix.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
Fixed the bug of using `pixel_edges` instead of `pixel_values` in plotting
15 changes: 13 additions & 2 deletions ndcube/mixins/plotting.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
from sunpy.visualization.imageanimator import ImageAnimator, ImageAnimatorWCS, LineAnimator

from ndcube import utils
from ndcube.utils.cube import _get_extra_coord_edges
from ndcube.mixins import sequence_plotting

__all__ = ['NDCubePlotMixin']
Expand Down Expand Up @@ -350,10 +351,10 @@ def _animate_cube_1D(self, plot_axis_index=-1, axes_coordinates=None,
# Get real world axis values along axis to be plotted and enter into axes_ranges kwarg.
if axes_coordinates[plot_axis_index] is None:
xname = self.world_axis_physical_types[plot_axis_index]
xdata = self.axis_world_coords(plot_axis_index)
xdata = self.axis_world_coords(plot_axis_index, edges=True)
elif isinstance(axes_coordinates[plot_axis_index], str):
xname = axes_coordinates[plot_axis_index]
xdata = self.extra_coords[xname]["value"]
xdata = _get_extra_coord_edges(self.extra_coords[xname]["value"])
yashrsharma44 marked this conversation as resolved.
Show resolved Hide resolved
else:
xname = ""
xdata = axes_coordinates[plot_axis_index]
Expand All @@ -370,6 +371,16 @@ def _animate_cube_1D(self, plot_axis_index=-1, axes_coordinates=None,
else:
unit_x_axis = None
# Put xdata back into axes_coordinates as a masked array.

DanRyanIrish marked this conversation as resolved.
Show resolved Hide resolved
if len(xdata.shape) > 1:
# Reduce the shape of the array into a 1D array by taking mean along all axis other than plot_axis_index
index = utils.wcs.get_dependent_data_axes(self.wcs, plot_axis_index, self.missing_axes)
reduce_axis = np.where(index == np.array(plot_axis_index))[0]

index = np.delete(index, reduce_axis)
# Reduce the data by taking mean
xdata = np.mean(xdata, axis=tuple(index))

axes_coordinates[plot_axis_index] = xdata
# Set default x label
default_xlabel = "{0} [{1}]".format(xname, unit_x_axis)
Expand Down
94 changes: 48 additions & 46 deletions ndcube/mixins/sequence_plotting.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
from sunpy.visualization.imageanimator import ImageAnimatorWCS, LineAnimator

from ndcube import utils
from ndcube.utils.cube import _get_extra_coord_edges

__all__ = ['NDCubeSequencePlotMixin']

Expand Down Expand Up @@ -956,7 +957,7 @@ def __init__(self, seq, plot_axis_index=None, axis_ranges=None, unit_x_axis=None
if axis_ranges is None:
axis_ranges = [None] * len(seq.dimensions)
if plot_axis_index == 0:
axis_ranges[plot_axis_index] = np.arange(len(seq.data))
axis_ranges[plot_axis_index] = _get_extra_coord_edges(np.arange(len(seq.data)), axis=plot_axis_index)
else:
cube_plot_axis_index = plot_axis_index - 1
# Define unit of x-axis if not supplied by user.
Expand All @@ -966,8 +967,8 @@ def __init__(self, seq, plot_axis_index=None, axis_ranges=None, unit_x_axis=None
unit_x_axis = np.asarray(seq[0].wcs.wcs.cunit)[wcs_plot_axis_index]
# Get x-axis values from each cube and combine into a single
# array for axis_ranges kwargs.
x_axis_coords = _get_non_common_axis_x_axis_coords(seq.data, cube_plot_axis_index,
unit_x_axis)
x_axis_coords = _get_extra_coord_edges(_get_non_common_axis_x_axis_coords(seq.data, cube_plot_axis_index,
DanRyanIrish marked this conversation as resolved.
Show resolved Hide resolved
unit_x_axis), axis=plot_axis_index)
axis_ranges[plot_axis_index] = np.stack(x_axis_coords)
# Set x-axis label.
if xlabel is None:
Expand Down Expand Up @@ -1023,51 +1024,52 @@ def __init__(self, seq, plot_axis_index=None, axis_ranges=None, unit_x_axis=None
for x_axis_value in x_axis_coords]
# If extra coord is same for each cube, storing
# values as single 1D axis range will suffice.
if ((np.array(x_axis_coords) == x_axis_coords[0]).all() and
(len(extra_coord_axes) == 1)):
x_axis_coords = x_axis_coords[0]
else:
# Else if all axes are not dependent, create an array of x-axis
# coords for each cube that are the same shape as the data in the
# respective cubes where the x coords are replicated in the extra
# dimensions. Then stack them together along the sequence axis so
# the final x-axis coord array is the same shape as the data array.
# This will be used in determining the correct x-axis coords for
# each frame of the animation.
if len(extra_coord_axes) != data_concat.ndim:
x_axis_coords_copy = copy.deepcopy(x_axis_coords)
x_axis_coords = []
for i, x_axis_cube_coords in enumerate(x_axis_coords_copy):
# For each cube in the sequence, use np.tile to replicate
# the x-axis coords through the higher dimensions.
# But first give extra dummy (length 1) dimensions to the
# x-axis coords array so its number of dimensions is the
# same as the cube's data array.
# First, create shape of pre-np.tiled x-coord array for the cube.
coords_reshape = np.array([1] * seq[i].data.ndim)
coords_reshape[extra_coord_axes] = x_axis_cube_coords.shape
# Then reshape x-axis array to give it the dummy dimensions.
x_axis_cube_coords = x_axis_cube_coords.reshape(
tuple(coords_reshape))
# Now the correct dummy dimensions are in place so the
# number of dimensions in the x-axis coord array equals
# the number of dimensions of the cube's data array,
# replicating the coords through the higher dimensions
# is simple using np.tile.
tile_shape = np.array(seq[i].data.shape)
tile_shape[extra_coord_axes] = 1
x_axis_cube_coords = np.tile(x_axis_cube_coords, tile_shape)
# Append new dimension-ed x-axis coords array for this cube
# sequence x-axis coords list.
x_axis_coords.append(x_axis_cube_coords)
# Stack the x-axis coords along a new axis for the sequence axis so
# its the same shape as the data array.
x_axis_coords = np.stack(x_axis_coords)
# if ((np.array(x_axis_coords) == x_axis_coords[0]).all() and
# (len(extra_coord_axes) == 1)):
# x_axis_coords = x_axis_coords[0]
# else:
# Else if all axes are not dependent, create an array of x-axis
# coords for each cube that are the same shape as the data in the
# respective cubes where the x coords are replicated in the extra
# dimensions. Then stack them together along the sequence axis so
# the final x-axis coord array is the same shape as the data array.
# This will be used in determining the correct x-axis coords for
# each frame of the animation.

if len(extra_coord_axes) != data_concat.ndim:
x_axis_coords_copy = copy.deepcopy(x_axis_coords)
x_axis_coords = []
for i, x_axis_cube_coords in enumerate(x_axis_coords_copy):
# For each cube in the sequence, use np.tile to replicate
# the x-axis coords through the higher dimensions.
# But first give extra dummy (length 1) dimensions to the
# x-axis coords array so its number of dimensions is the
# same as the cube's data array.
# First, create shape of pre-np.tiled x-coord array for the cube.
coords_reshape = np.array([1] * seq[i].data.ndim)
coords_reshape[extra_coord_axes] = x_axis_cube_coords.shape
# Then reshape x-axis array to give it the dummy dimensions.
x_axis_cube_coords = x_axis_cube_coords.reshape(
tuple(coords_reshape))
# Now the correct dummy dimensions are in place so the
# number of dimensions in the x-axis coord array equals
# the number of dimensions of the cube's data array,
# replicating the coords through the higher dimensions
# is simple using np.tile.
tile_shape = np.array(seq[i].data.shape)
tile_shape[extra_coord_axes] = 1
x_axis_cube_coords = np.tile(x_axis_cube_coords, tile_shape)
# Append new dimension-ed x-axis coords array for this cube
# sequence x-axis coords list.
x_axis_coords.append(x_axis_cube_coords)
# Stack the x-axis coords along a new axis for the sequence axis so
# its the same shape as the data array.
x_axis_coords = np.stack(x_axis_coords)
# Set x-axis label.
if xlabel is None:
xlabel = "{0} [{1}]".format(axis_extra_coord, unit_x_axis)
# Re-enter x-axis values into axis_ranges
axis_ranges[plot_axis_index] = x_axis_coords
axis_ranges[plot_axis_index] = _get_extra_coord_edges(x_axis_coords, axis=plot_axis_index)
# Else coordinate must have been defined manually.
else:
if isinstance(axis_ranges[plot_axis_index], u.Quantity):
Expand Down Expand Up @@ -1217,13 +1219,13 @@ def __init__(self, seq, plot_axis_index=None, axis_ranges=None, unit_x_axis=None
# The repeats is the inverse of dummy_reshape.
tile_shape = copy.deepcopy(cube_like_shape)
tile_shape[np.array(dependent_axes)] = 1
x_axis_coords = np.tile(x_axis_cube_coords, tile_shape)
x_axis_coords = _get_extra_coord_edges(np.tile(x_axis_cube_coords, tile_shape), axis=plot_axis_index)
yashrsharma44 marked this conversation as resolved.
Show resolved Hide resolved
else:
# Get x-axis values from each cube and combine into a single
# array for axis_ranges kwargs.
x_axis_coords = _get_non_common_axis_x_axis_coords(seq.data, plot_axis_index,
unit_x_axis)
axis_ranges[plot_axis_index] = np.concatenate(x_axis_coords, axis=seq._common_axis)
axis_ranges[plot_axis_index] = _get_extra_coord_edges(np.concatenate(x_axis_coords, axis=seq._common_axis), axis=plot_axis_index)
# Set axis labels and limits, etc.
if xlabel is None:
xlabel = "{0} [{1}]".format(
Expand Down
4 changes: 2 additions & 2 deletions ndcube/tests/test_plotting.py
Original file line number Diff line number Diff line change
Expand Up @@ -206,7 +206,7 @@ def test_cube_plot_1D_errors(test_input, test_kwargs, expected_error):
@pytest.mark.parametrize("test_input, test_kwargs, expected_values", [
(cube[0], {},
(np.ma.masked_array(cube[0].data, cube[0].mask), "time [min]", "em.wl [m]",
(0.4, 1.6, 2e-11, 6e-11))),
(-0.5, 3.5, 2.5, -0.5))),

(cube[0], {"axes_coordinates": ["bye", None], "axes_units": [None, u.cm]},
(np.ma.masked_array(cube[0].data, cube[0].mask), "bye [m]", "em.wl [cm]",
Expand Down Expand Up @@ -327,7 +327,7 @@ def test_support_101_plot_API_errors(input_values):
(cube_unit, {"plot_axis_indices": -1, "axes_coordinates": "bye"},
(cube_data, cube_none_axis_ranges_axis2_bye, "bye [m]", "Data [J]")),

(cube, {"plot_axis_indices": -1, "axes_coordinates": np.arange(10, 10+cube.data.shape[-1])},
(cube, {"plot_axis_indices": -1, "axes_coordinates": np.arange(10 - 0.5, 0.5+10 + cube.data.shape[-1])},
(cube_data, cube_none_axis_ranges_axis2_array, " [None]", "Data [None]"))
])
def test_cube_plot_ND_as_1DAnimation(test_input, test_kwargs, expected_values):
Expand Down
52 changes: 29 additions & 23 deletions ndcube/tests/test_sequence_plotting.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,10 +7,14 @@
import astropy.units as u
import matplotlib

from sunpy.visualization.animator.base import edges_to_centers_nd

from ndcube import NDCube, NDCubeSequence
from ndcube.utils.cube import _get_extra_coord_edges
from ndcube.utils.wcs import WCS
import ndcube.mixins.sequence_plotting


# sample data for tests
# TODO: use a fixture reading from a test file. file TBD.
data = np.array([[[1, 2, 3, 4], [2, 4, 5, 3], [0, -1, 2, 3]],
Expand Down Expand Up @@ -207,29 +211,31 @@
x_axis_coords3 = np.array([0.4, 0.8, 1.2, 1.6]).reshape((1, 1, 4))
new_x_axis_coords3_shape = u.Quantity(seq.dimensions, unit=u.pix).value.astype(int)
new_x_axis_coords3_shape[-1] = 1
none_axis_ranges_axis3 = [np.arange(0, len(seq.data)+1),
np.array([0., 1., 2.]), np.arange(0, 4),
none_axis_ranges_axis3 = [np.arange(0, len(seq.data)),
np.array([0., 1.]), np.arange(0, 3),
np.tile(np.array(x_axis_coords3), new_x_axis_coords3_shape)]
none_axis_ranges_axis0 = [np.arange(len(seq.data)),
np.array([0., 1., 2.]), np.arange(0, 4),
np.arange(0, int(seq.dimensions[-1].value)+1)]
distance0_none_axis_ranges_axis0 = [seq.sequence_axis_extra_coords["distance"].value,
np.array([0., 1., 2.]), np.arange(0, 4),
np.arange(0, int(seq.dimensions[-1].value)+1)]
distance0_none_axis_ranges_axis0_mm = [seq.sequence_axis_extra_coords["distance"].to("mm").value,
np.array([0., 1., 2.]), np.arange(0, 4),
np.arange(0, int(seq.dimensions[-1].value)+1)]
np.array([0., 1.]), np.arange(0, 3),
np.arange(0, int(seq.dimensions[-1].value))]
distance0_none_axis_ranges_axis0 = [edges_to_centers_nd(_get_extra_coord_edges(seq.sequence_axis_extra_coords["distance"].value),0),
np.array([0., 1.]), np.arange(0, 3),
np.arange(0, int(seq.dimensions[-1].value))]
distance0_none_axis_ranges_axis0_mm = [edges_to_centers_nd(_get_extra_coord_edges(seq.sequence_axis_extra_coords["distance"].to("mm").value),0),
np.array([0., 1.]), np.arange(0, 3),
np.arange(0, int(seq.dimensions[-1].value))]
userrangequantity_none_axis_ranges_axis0 = [
np.arange(int(seq.dimensions[0].value)), np.array([0., 1., 2.]), np.arange(0, 4),
np.arange(0, int(seq.dimensions[-1].value)+1)]
np.arange(int(seq.dimensions[0].value)), np.array([0., 1.]), np.arange(0, 3),
np.arange(0, int(seq.dimensions[-1].value))]

userrangequantity_none_axis_ranges_axis0_1e7 = [
(np.arange(int(seq.dimensions[0].value)) * u.J).to(u.erg).value, np.array([0., 1., 2.]),
np.arange(0, 4), np.arange(0, int(seq.dimensions[-1].value)+1)]
(np.arange(int(seq.dimensions[0].value)) * u.J).to(u.erg).value, np.array([0., 1.]),
np.arange(0, 3), np.arange(0, int(seq.dimensions[-1].value))]

x_axis_coords2 = np.array([[i]*4 for i in range(3)]*8).reshape(4, 2, 3, 4)

hi2_none_axis_ranges_axis2 = [
np.arange(0, len(seq.data)+1), np.array([0., 1., 2.]),
np.arange(int(seq.dimensions[2].value)), np.arange(0, int(seq.dimensions[-1].value)+1)]
np.arange(0, len(seq.data)), np.array([0., 1.]),
x_axis_coords2, np.arange(0, int(seq.dimensions[-1].value))]

x_axis_coords1 = np.zeros(tuple([int(s.value) for s in seq.dimensions]))
x_axis_coords1[0, 1] = 1.
Expand All @@ -239,8 +245,8 @@
x_axis_coords1[3, 0] = 2.
x_axis_coords1[3, 1] = 3.
pix1_none_axis_ranges_axis1 = [
np.arange(0, len(seq.data)+1), x_axis_coords1, np.arange(0, 4),
np.arange(0, int(seq.dimensions[-1].value)+1)]
np.arange(0, len(seq.data)), x_axis_coords1, np.arange(0, 3),
np.arange(0, int(seq.dimensions[-1].value))]

# Derive expected extents
seq_axis1_lim_deg = [0.49998731, 0.99989848]
Expand All @@ -253,14 +259,14 @@
seq.cube_like_dimensions, unit=u.pix).value.astype(int)
cube_like_new_x_axis_coords2_shape[-1] = 1
cubelike_none_axis_ranges_axis2 = [
np.arange(0, int(seq.cube_like_dimensions[0].value)+1), np.arange(0, 4),
np.arange(0, int(seq.cube_like_dimensions[0].value)), np.arange(0, 3),
yashrsharma44 marked this conversation as resolved.
Show resolved Hide resolved
np.tile(x_axis_coords3, cube_like_new_x_axis_coords2_shape)]

cubelike_none_axis_ranges_axis2_s = copy.deepcopy(cubelike_none_axis_ranges_axis2)
cubelike_none_axis_ranges_axis2_s[2] = cubelike_none_axis_ranges_axis2_s[2] * 60.

cubelike_none_axis_ranges_axis0 = [[0, 8], np.arange(0, 4),
np.arange(0, int(seq.cube_like_dimensions[-1].value)+1)]
cubelike_none_axis_ranges_axis0 = [[-0.5, 7.5], np.arange(0, 3),
np.arange(0, int(seq.cube_like_dimensions[-1].value))]


@pytest.mark.parametrize("test_input, test_kwargs, expected_values", [
Expand Down Expand Up @@ -684,14 +690,14 @@ def test_prep_axes_kwargs_errors(test_input, expected_error):
(seq_stack.data.min(), seq_stack.data.max()))),

(seq, {"plot_axis_indices": 0,
"axes_coordinates": userrangequantity_none_axis_ranges_axis0[0]*u.J},
"axes_coordinates": _get_extra_coord_edges(userrangequantity_none_axis_ranges_axis0[0])*u.J},
(seq_stack.data, userrangequantity_none_axis_ranges_axis0, " [J]", "Data [None]",
(userrangequantity_none_axis_ranges_axis0[0].min(),
userrangequantity_none_axis_ranges_axis0[0].max()),
(seq_stack.data.min(), seq_stack.data.max()))),

(seq, {"plot_axis_indices": 0, "axes_units": u.erg,
"axes_coordinates": userrangequantity_none_axis_ranges_axis0[0]*u.J},
"axes_coordinates": _get_extra_coord_edges(userrangequantity_none_axis_ranges_axis0[0])*u.J},
(seq_stack.data, userrangequantity_none_axis_ranges_axis0_1e7, " [erg]", "Data [None]",
(userrangequantity_none_axis_ranges_axis0_1e7[0].min(),
userrangequantity_none_axis_ranges_axis0_1e7[0].max()),
Expand Down
Loading