forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Model] Add classification Task with Qwen2ForSequenceClassification (v…
…llm-project#9704) Signed-off-by: Kevin-Yang <[email protected]> Co-authored-by: Kevin-Yang <[email protected]> Signed-off-by: Sumit Dubey <[email protected]>
- Loading branch information
Showing
6 changed files
with
211 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
"""Compare the outputs of HF and vLLM when using greedy sampling. | ||
This test only tests small models. Big models such as 7B should be tested from | ||
test_big_models.py because it could use a larger instance to run tests. | ||
Run `pytest tests/models/test_cls_models.py`. | ||
""" | ||
import pytest | ||
import torch | ||
from transformers import AutoModelForSequenceClassification | ||
|
||
CLASSIFICATION_MODELS = ["jason9693/Qwen2.5-1.5B-apeach"] | ||
|
||
|
||
@pytest.mark.parametrize("model", CLASSIFICATION_MODELS) | ||
@pytest.mark.parametrize("dtype", ["float"]) | ||
def test_classification_models( | ||
hf_runner, | ||
vllm_runner, | ||
example_prompts, | ||
model: str, | ||
dtype: str, | ||
) -> None: | ||
with hf_runner(model, | ||
dtype=dtype, | ||
auto_cls=AutoModelForSequenceClassification) as hf_model: | ||
hf_outputs = hf_model.classify(example_prompts) | ||
|
||
with vllm_runner(model, dtype=dtype) as vllm_model: | ||
vllm_outputs = vllm_model.classify(example_prompts) | ||
|
||
print(hf_outputs, vllm_outputs) | ||
|
||
# check logits difference | ||
for hf_output, vllm_output in zip(hf_outputs, vllm_outputs): | ||
hf_output = torch.tensor(hf_output) | ||
vllm_output = torch.tensor(vllm_output) | ||
|
||
assert torch.allclose(hf_output, vllm_output, 1e-3) | ||
|
||
|
||
@pytest.mark.parametrize("model", CLASSIFICATION_MODELS) | ||
@pytest.mark.parametrize("dtype", ["float"]) | ||
def test_classification_model_print( | ||
vllm_runner, | ||
model: str, | ||
dtype: str, | ||
) -> None: | ||
with vllm_runner(model, dtype=dtype) as vllm_model: | ||
# This test is for verifying whether the model's extra_repr | ||
# can be printed correctly. | ||
print(vllm_model.model.llm_engine.model_executor.driver_worker. | ||
model_runner.model) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
# coding=utf-8 | ||
# Adapted from | ||
# https://huggingface.co/Qwen/Qwen2.5-Math-RM-72B/blob/main/modeling_qwen2_rm.py | ||
# Copyright 2024 Kakao Corp. (Kanana-X Team) | ||
# Copyright 2024 The Qwen team. | ||
# Copyright 2023 The vLLM team. | ||
"""Inference-only Qwen2-Classification model compatible with HF weights.""" | ||
from typing import Iterable, List, Optional, Tuple | ||
|
||
import torch | ||
from torch import nn | ||
from transformers import Qwen2Config | ||
|
||
from vllm.attention import AttentionMetadata | ||
from vllm.config import CacheConfig, LoRAConfig | ||
from vllm.model_executor.layers.linear import RowParallelLinear | ||
from vllm.model_executor.layers.pooler import Pooler, PoolingType | ||
from vllm.model_executor.layers.quantization.base_config import ( | ||
QuantizationConfig) | ||
from vllm.model_executor.models.qwen2 import Qwen2Model | ||
from vllm.model_executor.pooling_metadata import PoolingMetadata | ||
from vllm.sequence import IntermediateTensors, PoolerOutput | ||
|
||
from .utils import AutoWeightsLoader | ||
|
||
|
||
class Qwen2ForSequenceClassification(nn.Module): | ||
packed_modules_mapping = { | ||
"qkv_proj": [ | ||
"q_proj", | ||
"k_proj", | ||
"v_proj", | ||
], | ||
"gate_up_proj": [ | ||
"gate_proj", | ||
"up_proj", | ||
], | ||
} | ||
|
||
# LoRA specific attributes | ||
supported_lora_modules = [ | ||
"qkv_proj", | ||
"o_proj", | ||
"gate_up_proj", | ||
"down_proj", | ||
] | ||
embedding_modules = {} | ||
embedding_padding_modules = [] | ||
|
||
def __init__( | ||
self, | ||
config: Qwen2Config, | ||
cache_config: Optional[CacheConfig] = None, | ||
quant_config: Optional[QuantizationConfig] = None, | ||
lora_config: Optional[LoRAConfig] = None, | ||
) -> None: | ||
# TODO (@robertgshaw2): see if this can be moved out | ||
if (cache_config.sliding_window is not None | ||
and hasattr(config, "max_window_layers")): | ||
raise ValueError("Sliding window for some but all layers is not " | ||
"supported. This model uses sliding window " | ||
"but `max_window_layers` = %s is less than " | ||
"`num_hidden_layers` = %s. Please open an issue " | ||
"to discuss this feature." % ( | ||
config.max_window_layers, | ||
config.num_hidden_layers, | ||
)) | ||
|
||
super().__init__() | ||
|
||
self.config = config | ||
self.lora_config = lora_config | ||
|
||
self.quant_config = quant_config | ||
self.model = Qwen2Model(config, cache_config, quant_config) | ||
|
||
self.score = RowParallelLinear(config.hidden_size, | ||
config.num_labels, | ||
quant_config=quant_config) | ||
self._pooler = Pooler(pooling_type=PoolingType.LAST, | ||
normalize=False, | ||
softmax=True) | ||
|
||
def forward( | ||
self, | ||
input_ids: torch.Tensor, | ||
positions: torch.Tensor, | ||
kv_caches: List[torch.Tensor], | ||
attn_metadata: AttentionMetadata, | ||
intermediate_tensors: Optional[IntermediateTensors] = None, | ||
) -> torch.Tensor: | ||
hidden_states = self.model(input_ids, positions, kv_caches, | ||
attn_metadata, intermediate_tensors) | ||
logits, _ = self.score(hidden_states) | ||
return logits | ||
|
||
def pooler( | ||
self, | ||
hidden_states: torch.Tensor, | ||
pooling_metadata: PoolingMetadata, | ||
) -> Optional[PoolerOutput]: | ||
return self._pooler(hidden_states, pooling_metadata) | ||
|
||
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): | ||
loader = AutoWeightsLoader(self, | ||
ignore_unexpected_prefixes=["lm_head."]) | ||
loader.load_weights(weights) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters