forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Model][LoRA]LoRA support added for MiniCPMV2.5 (vllm-project#7199)
Signed-off-by: Sumit Dubey <[email protected]>
- Loading branch information
Showing
8 changed files
with
378 additions
and
31 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
from typing import List | ||
|
||
import vllm | ||
from vllm.assets.image import ImageAsset | ||
from vllm.lora.request import LoRARequest | ||
|
||
MODEL_PATH = "openbmb/MiniCPM-Llama3-V-2_5" | ||
|
||
PROMPT_TEMPLATE = ( | ||
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" | ||
"(<image>./</image>)\nWhat is in the image?<|eot_id|>" | ||
"<|start_header_id|>assistant<|end_header_id|>\n\n") | ||
|
||
IMAGE_ASSETS = [ | ||
ImageAsset("stop_sign"), | ||
ImageAsset("cherry_blossom"), | ||
] | ||
|
||
# After fine-tuning with LoRA, all generated content should start begin `A`. | ||
EXPECTED_OUTPUT = [ | ||
"A red and white stop sign with a Chinese archway in the background featuring red lanterns and gold accents.", # noqa: E501 | ||
"A pink cherry blossom tree with a blue sky in the background.", | ||
] | ||
|
||
|
||
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]: | ||
sampling_params = vllm.SamplingParams( | ||
temperature=0, | ||
max_tokens=5, | ||
stop_token_ids=[128001, 128009], # eos_id, eot_id | ||
) | ||
|
||
inputs = [{ | ||
"prompt": PROMPT_TEMPLATE, | ||
"multi_modal_data": { | ||
"image": asset.pil_image | ||
}, | ||
} for asset in IMAGE_ASSETS] | ||
|
||
outputs = llm.generate( | ||
inputs, | ||
sampling_params, | ||
lora_request=LoRARequest(str(lora_id), lora_id, lora_path) | ||
if lora_id else None, | ||
) | ||
# Print the outputs. | ||
generated_texts: List[str] = [] | ||
for output in outputs: | ||
prompt = output.prompt | ||
generated_text = output.outputs[0].text.strip() | ||
generated_texts.append(generated_text) | ||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") | ||
return generated_texts | ||
|
||
|
||
def test_minicpmv_lora(minicpmv_lora_files): | ||
llm = vllm.LLM( | ||
MODEL_PATH, | ||
max_num_seqs=2, | ||
enable_lora=True, | ||
max_loras=4, | ||
max_lora_rank=64, | ||
trust_remote_code=True, | ||
) | ||
|
||
output1 = do_sample(llm, minicpmv_lora_files, lora_id=1) | ||
for i in range(len(EXPECTED_OUTPUT)): | ||
assert EXPECTED_OUTPUT[i].startswith(output1[i]) | ||
output2 = do_sample(llm, minicpmv_lora_files, lora_id=2) | ||
for i in range(len(EXPECTED_OUTPUT)): | ||
assert EXPECTED_OUTPUT[i].startswith(output2[i]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
from typing import List | ||
|
||
import pytest | ||
|
||
import vllm | ||
from vllm.assets.image import ImageAsset | ||
from vllm.lora.request import LoRARequest | ||
|
||
from ..utils import multi_gpu_test | ||
|
||
MODEL_PATH = "openbmb/MiniCPM-Llama3-V-2_5" | ||
|
||
PROMPT_TEMPLATE = ( | ||
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" | ||
"(<image>./</image>)\nWhat is in the image?<|eot_id|>" | ||
"<|start_header_id|>assistant<|end_header_id|>\n\n") | ||
|
||
IMAGE_ASSETS = [ | ||
ImageAsset("stop_sign"), | ||
ImageAsset("cherry_blossom"), | ||
] | ||
|
||
# After fine-tuning with LoRA, all generated content should start begin `A`. | ||
EXPECTED_OUTPUT = [ | ||
"A red and white stop sign with a Chinese archway in the background featuring red lanterns and gold accents.", # noqa: E501 | ||
"A pink cherry blossom tree with a blue sky in the background.", | ||
] | ||
|
||
|
||
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]: | ||
sampling_params = vllm.SamplingParams( | ||
temperature=0, | ||
max_tokens=5, | ||
stop_token_ids=[128001, 128009], # eos_id, eot_id | ||
) | ||
|
||
inputs = [{ | ||
"prompt": PROMPT_TEMPLATE, | ||
"multi_modal_data": { | ||
"image": asset.pil_image | ||
}, | ||
} for asset in IMAGE_ASSETS] | ||
|
||
outputs = llm.generate( | ||
inputs, | ||
sampling_params, | ||
lora_request=LoRARequest(str(lora_id), lora_id, lora_path) | ||
if lora_id else None, | ||
) | ||
# Print the outputs. | ||
generated_texts: List[str] = [] | ||
for output in outputs: | ||
prompt = output.prompt | ||
generated_text = output.outputs[0].text.strip() | ||
generated_texts.append(generated_text) | ||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") | ||
return generated_texts | ||
|
||
|
||
@multi_gpu_test(num_gpus=2) | ||
@pytest.mark.parametrize("fully_sharded", [True, False]) | ||
def test_minicpmv_tp2(minicpmv_lora_files, fully_sharded): | ||
llm = vllm.LLM( | ||
MODEL_PATH, | ||
enable_lora=True, | ||
max_num_seqs=2, | ||
max_loras=4, | ||
max_lora_rank=64, | ||
tensor_parallel_size=2, | ||
trust_remote_code=True, | ||
fully_sharded_loras=fully_sharded, | ||
) | ||
|
||
output_tp = do_sample(llm, minicpmv_lora_files, lora_id=1) | ||
|
||
for i in range(len(EXPECTED_OUTPUT)): | ||
assert EXPECTED_OUTPUT[i].startswith(output_tp[i]) | ||
|
||
|
||
@multi_gpu_test(num_gpus=4) | ||
@pytest.mark.parametrize("fully_sharded", [True, False]) | ||
def test_minicpmv_tp4(minicpmv_lora_files, fully_sharded): | ||
llm = vllm.LLM( | ||
MODEL_PATH, | ||
enable_lora=True, | ||
max_num_seqs=2, | ||
max_loras=4, | ||
max_lora_rank=64, | ||
tensor_parallel_size=4, | ||
trust_remote_code=True, | ||
fully_sharded_loras=fully_sharded, | ||
) | ||
output_tp = do_sample(llm, minicpmv_lora_files, lora_id=1) | ||
for i in range(len(EXPECTED_OUTPUT)): | ||
assert EXPECTED_OUTPUT[i].startswith(output_tp[i]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.