# From tensorflow/models/research/
$ python object_detection/export_tflite_ssd_graph.py \
--pipeline_config_path=ssdlite_mobilenet_edgetpu_coco_quant/pipeline.config \
--trained_checkpoint_prefix=./ssdlite_mobilenet_edgetpu_coco_quant/model.ckpt \
--output_directory=ssdlite_mobilenet_edgetpu_coco_quant \
--add_postprocessing_op=true
$ tflite_convert \
--output_file=ssdlite_mobilenet_edgetpu_coco_quant/output_tflite_graph.tflite \
--graph_def_file=ssdlite_mobilenet_edgetpu_coco_quant/tflite_graph.pb \
--inference_type=QUANTIZED_UINT8 \
--input_arrays=normalized_input_image_tensor \
--output_arrays=TFLite_Detection_PostProcess,TFLite_Detection_PostProcess:1,TFLite_Detection_PostProcess:2,TFLite_Detection_PostProcess:3 \
--mean_values=128 \
--std_dev_values=128 \
--input_shapes=1,320,320,3 \
--change_concat_input_ranges=false \
--allow_nudging_weights_to_use_fast_gemm_kernel=true
--allow_custom_ops
$ cd ssdlite_mobilenet_edgetpu_coco_quant
$ edgetpu_compiler -s output_tflite_graph.tflite
$ python ./object_detection_capture_picamera.py \
--model=<PATH_TO_edgetpu.tflite> \
--label=<PATH_TO_LABELS_TXT>
$ python object_detection_capture_opencv.py \
--model=<PATH_TO_edgetpu.tflite> \
--label=<PATH_TO_LABELS_TXT> \
--videopath=<PATH_TO_VIDEO_FILE>
# Note: To open camera using default backend just pass 0.
$ python object_detection_capture_opencv.py \
--model=<PATH_TO_edgetpu.tflite> \
--label=<PATH_TO_LABELS_TXT>