Skip to content

stud2008/bert-multitask-learning

 
 

Repository files navigation

Bert for Multi-task Learning

中文文档

Update: Download trained checkpoint for Chinese NLP problems. (CWS|ctb_pos|msra_ner|boson_ner|weibo_ner|emotion_analysis|ontonotes_cws&ontonotes_ner, you can drop some problems if you don't need them all while starting the server. download)

What is it

This a project that uses BERT to do multi-task learning with multiple GPU support.

Why do I need this

In the original BERT code, neither multi-task learning or multiple GPU training is possible. Plus, the original purpose of this project is NER which dose not have a working script in the original BERT code.

To sum up, compared to the original bert repo, this repo has the following features:

  1. Multi-task learning(major reason of re-writing the majority of code).
  2. Multiple GPU training
  3. Support sequence labeling (for example, NER) and Encoder-Decoder Seq2Seq(with transformer decoder).

How to run pre-defined problems

How to train

There are two types of chaining operations can be used to chain problems.

  • &. If two problems have the same inputs, they can be chained using &. Problems chained by & will be trained at the same time.
  • |. If two problems don't have the same inputs, they need to be chained using |. Problems chained by | will be sampled to train at every instance.

For example, CWS|NER|weibo_ner&weibo_cws, one problem will be sampled at each turn, say weibo_ner&weibo_cws, then weibo_ner and weibo_cws will trained for this turn together. Therefore, in a particular batch, some tasks might not be sampled, and their loss could be 0 in this batch.

You can train using the following command.

python main.py --problem "CWS|NER|weibo_ner&weibo_cws" --schedule train --model_dir "tmp/multitask"

For evaluation, you need to separate the problems.

python main.py --problem "CWS" --schedule eval --model_dir "tmp/multitask"
python main.py --problem "NER" --schedule eval --model_dir "tmp/multitask"
python main.py --problem "weibo_ner&weibo_cws" --schedule eval --model_dir "tmp/multitask"

How to use trained model

It is recommended to use this repo to serve model.

python main.py --problem "CWS|NER|weibo_ner&weibo_cws" --schedule train --model_dir "tmp/multitask"
python export_model.py --problem "CWS|NER|weibo_ner&weibo_cws" --model_dir "tmp/multitask"

The above command will train the model and export to the path tmp/multitask/serve_model.

Then you can start the service with command below. Please make sure the server is installed.

bert-serving-start -num_worker 2 -gpu_memory_fraction 0.95 -device_map 0 1 -problem "CWS|NER|weibo_ner&weibo_cws" -model_dir tmp/multitask/serve_model

How to add problems

  1. Implement data preprocessing function and import it into src/data_preprocessing/__init__.py. Please note that the funcion name should the same as problem name. One example can be found below.

  2. Add problem config to class Params's attribute self.problem_type in src/params.py. Supported problem types are cls(classification), seq_tag(sequence labeling), seq2seq_tag(seq2seq tagging, please refer to chunking), seq2seq_text(seq2seq text generation).

def weibo_fake_cls(params, mode):
    """Just a test problem to test multiproblem support

    Arguments:
        params {Params} -- params
        mode {mode} -- mode
    """
    tokenizer = FullTokenizer(vocab_file=params.vocab_file)

    # Note: split the inputs to training set and eval set
    if mode == 'train':
        inputs_list = [['科','技','全','方','位','资','讯','智','能',',','快','捷','的','汽','车','生','活','需','要','有','三','屏','一','云','爱','你']]
        target_list = [0]
    else:
        inputs_list = [['对', ',', '输', '给', '一', '个', '女', '人', ',', '的', '成', '绩', '。', '失', '望']]
        target_list = [0]

    label_encoder = get_or_make_label_encoder(
        'weibo_fake_cls', mode, target_list, 0)

    return create_single_problem_generator('weibo_fake_cls',
                                           inputs_list,
                                           new_target_list,
                                           label_encoder,
                                           params,
                                           tokenizer,
                                           mode)

Bert多任务学习

更新: 在多个中文NLP任务上训练好的模型 (CWS|ctb_pos|msra_ner|boson_ner|weibo_ner|emotion_analysis|ontonotes_cws&ontonotes_ner, 如果不需要全部结果, 可以在启动服务时自行减去. 下载)

这是什么

这是利用BERT进行多任务学习并且支持多GPU训练的项目.

我为什么需要这个项目

在原始的BERT代码中, 是没有办法直接用多GPU进行多任务学习的. 另外, BERT并没有给出序列标注和Seq2seq的训练代码.

因此, 和原来的BERT相比, 这个项目具有以下特点:

  1. 多任务学习
  2. 多GPU训练
  3. 序列标注以及Encoder-decoder seq2seq的支持(用transformer decoder)

如何运行预定义任务

目前支持的任务

  • 中文命名实体识别
  • 中文分词
  • 中文词性标注

如何训练预定义任务

可以用两种方法来将多个任务连接起来.

  • &. 如果两个任务有相同的输入, 不同标签的话, 那么他们可以&来连接. 被&连接起来的任务会被同时训练.
  • |. 如果两个任务为不同的输入, 那么他们必须|来连接. 被|连接起来的任务会被随机抽取来训练.

例如, 我们定义任务CWS|NER|weibo_ner&weibo_cws, 那么在生成每一条数据时, 一个任务块会被随机抽取出来, 例如在这一次抽样中, weibo_ner&weibo_cws被选中. 那么这次weibo_nerweibo_cws会被同时训练. 因此, 在一个batch中, 有可能某些任务没有被抽中, loss为0.

接着, 你可以用下面这个命令开始训练.

python main.py --problem "CWS|NER|weibo_ner&weibo_cws" --schedule train --model_dir "tmp/multitask"

你需要单独对每个任务做evaluation.

python main.py --problem "CWS" --schedule eval --model_dir "tmp/multitask"
python main.py --problem "NER" --schedule eval --model_dir "tmp/multitask"
python main.py --problem "weibo_ner&weibo_cws" --schedule eval --model_dir "tmp/multitask"

如何使用已经训练完成的模型

推荐使用这个项目来serve模型

python main.py --problem "CWS|NER|weibo_ner&weibo_cws" --schedule train --model_dir "tmp/multitask"
python export_model.py --problem "CWS|NER|weibo_ner&weibo_cws" --model_dir "tmp/multitask"

上面两行命令会训练模型并输出到目录tmp/multitask/serve_model.

然后就可以用下面的命令开启模型服务了. 请确保服务端已经正确安装.

bert-serving-start -num_worker 2 -gpu_memory_fraction 0.95 -device_map 0 1 -problem "CWS|NER|weibo_ner&weibo_cws" -model_dir tmp/multitask/serve_model

如何添加自定义的任务

  1. src/data_preprocessing/目录中编写数据预处理函数, 并且import到src/data_preprocessing/__init__.py中. 需要注意的是函数名和任务名需要相同. 可以参考下面的例子.

  2. 将任务类型添加到src/params.py里面的Params类的self.problem_type中. 目前支持的类型为cls(分类), seq_tag(序列标注), seq2seq_tag(seq2seq标注, 即非定长标注, 参考chunking), seq2seq_text(seq2seq文本生成).

def weibo_fake_cls(params, mode):
    """Just a test problem to test multiproblem support

    Arguments:
        params {Params} -- params
        mode {mode} -- mode
    """
    tokenizer = FullTokenizer(vocab_file=params.vocab_file)

    # Note: split the inputs to training set and eval set
    if mode == 'train':
        inputs_list = [['科','技','全','方','位','资','讯','智','能',',','快','捷','的','汽','车','生','活','需','要','有','三','屏','一','云','爱','你']]
        target_list = [0]
    else:
        inputs_list = [['对', ',', '输', '给', '一', '个', '女', '人', ',', '的', '成', '绩', '。', '失', '望']]
        target_list = [0]

    label_encoder = get_or_make_label_encoder(
        'weibo_fake_cls', mode, target_list, 0)

    return create_single_problem_generator('weibo_fake_cls',
                                           inputs_list,
                                           new_target_list,
                                           label_encoder,
                                           params,
                                           tokenizer,
                                           mode)

About

BERT for Multitask Learning

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%