A replacement for libslirp and VPNKit, written in pure Go. It is based on the network stack of gVisor.
Compared to libslirp, gvisor-tap-vsock brings a configurable DNS server and dynamic port forwarding.
It can be used with Qemu, Hyperkit, Hyper-V and User Mode Linux.
make
Usually with Qemu, to not run as root, you would have to use -netdev user,id=n0
.
With this project, this is the same but you have to run a daemon on the host.
There 2 ways for the VM to communicate with the daemon: with a tcp port or with a unix socket.
With gvproxy and the VM discussing on a tcp port:
(terminal 1) $ bin/gvproxy -debug -listen unix:///tmp/network.sock -listen-qemu tcp://0.0.0.0:1234
(terminal 2) $ qemu-system-x86_64 (all your qemu options) -netdev socket,id=vlan,connect=127.0.0.1:1234 -device virtio-net-pci,netdev=vlan,mac=5a:94:ef:e4:0c:ee
With gvproxy and the VM discussing on a unix socket:
(terminal 1) $ bin/gvproxy -debug -listen unix:///tmp/network.sock -listen-qemu unix:///tmp/qemu.sock
(terminal 2) $ bin/qemu-wrapper /tmp/qemu.sock qemu-system-x86_64 (all your qemu options) -netdev socket,id=vlan,fd=3 -device virtio-net-pci,netdev=vlan,mac=5a:94:ef:e4:0c:ee
(terminal 1) $ bin/gvproxy -debug -listen unix:///tmp/network.sock -listen-bess unixpacket:///tmp/bess.sock
(terminal 2) $ linux.uml vec0:transport=bess,dst=/tmp/bess.sock,depth=128,gro=1,mac=5a:94:ef:e4:0c:ee root=/dev/root rootfstype=hostfs init=/bin/bash mem=2G
(terminal 2: UML)$ ip addr add 192.168.127.2/24 dev vec0
(terminal 2: UML)$ ip link set vec0 up
(terminal 2: UML)$ ip route add default via 192.168.127.254
More docs about the User Mode Linux with BESS socket transport: https://www.kernel.org/doc/html/latest/virt/uml/user_mode_linux_howto_v2.html#bess-socket-transport
Made for Windows but also works for Linux and macOS with HyperKit.
$service = New-Item -Path "HKLM:\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Virtualization\GuestCommunicationServices" -Name "00000400-FACB-11E6-BD58-64006A7986D3"
$service.SetValue("ElementName", "gvisor-tap-vsock")
In the VM, be sure to have hv_sock
module loaded.
On Fedora 32, it worked out of the box. On others distros, you might have to look at https://github.com/mdlayher/vsock#requirements.
Please locate the hyperkit state (there is a file called connect
inside) folder and launch gvproxy
with the following listen argument:
--listen vsock://null:1024/path_to_connect_directory
(host) $ sudo bin/gvproxy -debug -listen vsock://:1024 -listen unix:///tmp/network.sock
With a container:
(vm) # docker run -d --name=gvisor-tap-vsock --privileged --net=host -it quay.io/crcont/gvisor-tap-vsock:latest
(vm) $ ping -c1 192.168.127.1
(vm) $ curl http://redhat.com
With the executable:
(vm) # ./vm -debug
The executable running on the host, gvproxy
, exposes a HTTP API. It can be used with curl.
$ curl --unix-socket /tmp/network.sock http:/unix/stats
{
"BytesSent": 0,
"BytesReceived": 0,
"UnknownProtocolRcvdPackets": 0,
"MalformedRcvdPackets": 0,
...
The executable running on the host runs a virtual gateway that can be used by the VM. It runs a DHCP server. It allows VMs to configure the network automatically (IP, MTU, DNS, search domain, etc.).
The gateway also runs a DNS server. It can be configured to serve static zones.
Activate it by changing the /etc/resolv.conf
file inside the VM with:
nameserver 192.168.127.1
Dynamic port forwarding is supported.
Expose a port:
$ curl --unix-socket /tmp/network.sock http:/unix/services/forwarder/expose -X POST -d '{"local":":6443","remote":"192.168.127.2:6443"}'
Unexpose a port:
$ curl --unix-socket /tmp/network.sock http:/unix/services/forwarder/unexpose -X POST -d '{"local":":6443"}'
List exposed ports:
$ curl --unix-socket /tmp/network.sock http:/unix/services/forwarder/all | jq .
[
{
"local": ":2222",
"remote": "192.168.127.2:22"
},
{
"local": ":6443",
"remote": "192.168.127.2:6443"
}
]
The HTTP API exposed on the host can be used to connect to a specific IP and port inside the virtual network. A working example for SSH can be found here.
- ICMP is not forwarded outside the network.
Using iperf3, it can achieve between 1.6 and 2.3Gbits/s depending on which side the test is performed (tested with a mtu of 4000 with Qemu on macOS).
- A tap network interface is running in the VM. It's the default gateway.
- User types
curl redhat.com
- Linux kernel sends raw Ethernet packets to the tap device.
- Tap device sends these packets to a process on the host using vsock
- The process on the host maintains both internal (host to VM) and external (host to Internet endpoint) connections. It uses regular syscalls to connect to external endpoints.
This is the same behaviour as slirp.
- The process on the host binds the port 80.
- Each time, a client sends a http request, the process creates and sends the appropriate Ethernet packets to the VM.
- The tap device receives the packets and injects them in the kernel.
- The http server receives the request and send back the response.