Skip to content

Commit

Permalink
optimize: transform box constraints
Browse files Browse the repository at this point in the history
Closes #528
  • Loading branch information
jschueller committed Nov 11, 2024
1 parent 4d57a8a commit 6a9fbb0
Show file tree
Hide file tree
Showing 5 changed files with 119 additions and 12 deletions.
5 changes: 5 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,9 @@
# NLopt Release Notes

in-progress

* Fixed PRAXIS box constraints ([#528])

## NLopt 2.9

10 November 2024
Expand Down Expand Up @@ -517,6 +521,7 @@
[#504]: https://github.com/stevengj/nlopt/issues/504
[#509]: https://github.com/stevengj/nlopt/issues/509
[#510]: https://github.com/stevengj/nlopt/issues/510
[#528]: https://github.com/stevengj/nlopt/issues/528
[#533]: https://github.com/stevengj/nlopt/issues/533
[#534]: https://github.com/stevengj/nlopt/issues/534
[#535]: https://github.com/stevengj/nlopt/issues/535
Expand Down
2 changes: 1 addition & 1 deletion doc/docs/NLopt_Algorithms.md
Original file line number Diff line number Diff line change
Expand Up @@ -258,7 +258,7 @@ The original Fortran code was written by Richard Brent and made available by the

Specified in NLopt as `NLOPT_LN_PRAXIS`

This algorithm was originally designed for unconstrained optimization. In NLopt, bound constraints are "implemented" in PRAXIS by the simple expedient of returning infinity (Inf) when the constraints are violated (this is done automatically—you don't have to do this in your own function). This seems to work, more-or-less, but appears to slow convergence significantly. If you have bound constraints, you are probably better off using COBYLA or BOBYQA.
This algorithm was originally designed for unconstrained optimization. In NLopt, bound constraints are emulated by variable transformation unlike gradient-free algorithms that natively support them like COBYLA or BOBYQA.

### Nelder-Mead Simplex

Expand Down
75 changes: 65 additions & 10 deletions src/api/optimize.c
Original file line number Diff line number Diff line change
Expand Up @@ -57,23 +57,68 @@
#include "slsqp.h"

/*********************************************************************/
/* to emulate box constraint support with variable transform */

static double f_bound(int n, const double *x, void *data_)
static void x_bound_inv(int n, double *x, const double *lb, const double *ub)
{
int i;
double mid, width, th;
if (!lb || !ub)
return;
for (i = 0; i < n; ++ i)
{
if (!nlopt_isinf(lb[i]) && !nlopt_isinf(ub[i]))
{
mid = (lb[i] + ub[i]) * 0.5;
width = (ub[i] - lb[i]) * 0.5;
th = tanh(x[i]);
x[i] = mid + th * width;
}
else if (!nlopt_isinf(lb[i]))
x[i] = (x[i] > lb[i]) ? sqrt(x[i] - lb[i]) : 0.0;
else if (!nlopt_isinf(ub[i]))
x[i] = (x[i] < ub[i]) ? sqrt(ub[i] - x[i]) : 0.0;
}
}

static void x_bound(int n, double *x, const double *lb, const double *ub)
{
int i;
double mid, width, th;
if (!lb || !ub)
return;
for (i = 0; i < n; ++ i)
{
if (!nlopt_isinf(lb[i]) && !nlopt_isinf(ub[i]))
{
mid = (lb[i] + ub[i]) * 0.5;
width = (ub[i] - lb[i]) * 0.5;
th = tanh(x[i]);
x[i] = mid + th * width;
}
else if (!nlopt_isinf(lb[i]))
x[i] = lb[i] + x[i] * x[i];
else if (!nlopt_isinf(ub[i]))
x[i] = ub[i] - x[i] * x[i];
}
}

static double f_bound(int n, const double *x, void *data_)
{
nlopt_opt data = (nlopt_opt) data_;
double f;
double *x_tr = NULL;

/* some methods do not support bound constraints, but support
discontinuous objectives so we can just return Inf for invalid x */
for (i = 0; i < n; ++i)
if (x[i] < data->lb[i] || x[i] > data->ub[i])
return HUGE_VAL;

f = data->f((unsigned) n, x, NULL, data->f_data);
return (nlopt_isnan(f) || nlopt_isinf(f) ? HUGE_VAL : f);
x_tr = (double *) malloc(n * sizeof(double));
memcpy(x_tr, x, n * sizeof(double));
x_bound(n, x_tr, data->lb, data->ub);
f = data->f((unsigned) n, x_tr, NULL, data->f_data);
free(x_tr);
return f;
}

/*********************************************************************/

static double f_noderiv(int n, const double *x, void *data_)
{
nlopt_opt data = (nlopt_opt) data_;
Expand Down Expand Up @@ -649,9 +694,19 @@ static nlopt_result nlopt_optimize_(nlopt_opt opt, double *x, double *minf)
case NLOPT_LN_PRAXIS:
{
double step;
nlopt_result result;

if (initial_step(opt, x, &step) != NLOPT_SUCCESS)
return NLOPT_OUT_OF_MEMORY;
return praxis_(nlopt_get_param(opt, "t0_tol", 0.0), DBL_EPSILON, step, ni, x, f_bound, opt, &stop, minf);

/* transform starting point into unbound space */
x_bound_inv(ni, x, opt->lb, opt->ub);

result = praxis_(nlopt_get_param(opt, "t0_tol", 0.0), DBL_EPSILON, step, ni, x, f_bound, opt, &stop, minf);

/* transform back optimal point to bounded space */
x_bound(ni, x, opt->lb, opt->ub);
return result;
}

case NLOPT_LD_LBFGS:
Expand Down
3 changes: 2 additions & 1 deletion test/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,8 @@ macro(NLOPT_add_cpp_test test_name)
endmacro()

NLOPT_add_cpp_test(t_tutorial 23 24 30 39)
NLOPT_add_cpp_test(cpp_functor)
NLOPT_add_cpp_test(cpp_functor 0)
NLOPT_add_cpp_test(t_fbound 0)

NLOPT_add_cpp_test(t_bounded 0 1 2 3 4 5 6 7 8 18 34 41 42)
if (NOT NLOPT_CXX)
Expand Down
46 changes: 46 additions & 0 deletions test/t_fbound.cxx
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
#include <iostream>
#include <vector>
#include <string>
#include <cmath>
#include <iomanip>
#include <nlopt.hpp>

double myvfunc(const std::vector<double> &x, std::vector<double> &grad, void *data)
{
(void)data;
if (!grad.empty()) {
grad[0] = 2*x[0];
grad[1] = 2*x[1];
}
if (std::isnan(x[0]))
throw std::invalid_argument("nan");
return -x[0]*x[0]-x[1]*x[1];
}


int main() {
nlopt::srand(0);
for (int repeat = 0; repeat < 100; ++repeat)
{
std::cout << "repeat="<<repeat<<std::endl;
nlopt::opt opt(nlopt::LN_PRAXIS, 2);
std::vector<double> lb = {-1.0, -10.0};
std::vector<double> ub = {10.0, 1.0};
opt.set_lower_bounds(lb);
opt.set_upper_bounds(ub);
opt.set_min_objective(myvfunc, NULL);
opt.set_ftol_rel(1e-6);
std::vector<double> x = {0.5, 0.5};
double minf;
try{
opt.optimize(x, minf);
std::cout << "found optimum at f(" << x[0] << "," << x[1] << ") = "
<< std::setprecision(10) << minf <<std::endl;
}
catch(std::exception &e) {
std::cerr << "nlopt failed: " << e.what() << std::endl;
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}

0 comments on commit 6a9fbb0

Please sign in to comment.