Skip to content

Commit

Permalink
Splitting feature level drift metrics in seldon request logger (Seldo…
Browse files Browse the repository at this point in the history
…nIO#3564)

* Fixing unrelated  lint issues

* Fixing unrelated  lint issues

* Splitting feature level drift elements
  • Loading branch information
Sachin Varghese authored Sep 3, 2021
1 parent c6529a5 commit d1faf71
Showing 1 changed file with 19 additions and 12 deletions.
31 changes: 19 additions & 12 deletions components/seldon-request-logger/app/default_logger.py
Original file line number Diff line number Diff line change
Expand Up @@ -239,7 +239,11 @@ def process_and_update_elastic_doc(
content_dist = np.array(item_body[message_type]["data"]["distance"])
x = np.expand_dims(content_dist, axis=0)
item_body[message_type]["data"]["drift_type"] = "feature"
item_body[message_type]["data"]["distance"] = createElelmentsArray(x, None, namespace, serving_engine, inferenceservice_name, endpoint_name, "request")
elements = createElelmentsArray(x, None, namespace, serving_engine, inferenceservice_name, endpoint_name, "request", True)
if type(elements) == type([]):
elements = elements[0]
item_body[message_type]["data"]["feature_distance"] = elements
del item_body[message_type]["data"]["distance"]
if (
"p_val" in item_body[message_type]["data"]
and item_body[message_type]["data"]["p_val"] is not None
Expand All @@ -248,7 +252,11 @@ def process_and_update_elastic_doc(
content_dist = np.array(item_body[message_type]["data"]["p_val"])
x = np.expand_dims(content_dist, axis=0)
item_body[message_type]["data"]["drift_type"] = "feature"
item_body[message_type]["data"]["p_val"] = createElelmentsArray(x, None, namespace, serving_engine, inferenceservice_name, endpoint_name, "request")
elements = createElelmentsArray(x, None, namespace, serving_engine, inferenceservice_name, endpoint_name, "request", True)
if type(elements) == type([]):
elements = elements[0]
item_body[message_type]["data"]["feature_p_val"] = elements
del item_body[message_type]["data"]["p_val"]
detectorName=None
ce_source = item_body[message_type]["ce-source"]
if ce_source.startswith("io.seldon.serving."):
Expand Down Expand Up @@ -530,7 +538,7 @@ def extractRow(
reqJson["dataType"] = dataType
return reqJson

def createElelmentsArray(X: np.ndarray, names: list, namespace_name, serving_engine, inferenceservice_name, endpoint_name, message_type):
def createElelmentsArray(X: np.ndarray, names: list, namespace_name, serving_engine, inferenceservice_name, endpoint_name, message_type, force_raw_value = False):
metadata_schema = None

if namespace_name is not None and inferenceservice_name is not None and serving_engine is not None and endpoint_name is not None:
Expand All @@ -543,12 +551,12 @@ def createElelmentsArray(X: np.ndarray, names: list, namespace_name, serving_eng
if not metadata_schema:
results = createElementsNoMetadata(X, names, results)
else:
results = createElementsWithMetadata(X, names, results, metadata_schema, message_type)
results = createElementsWithMetadata(X, names, results, metadata_schema, message_type, force_raw_value)

return results


def createElementsWithMetadata(X, names, results, metadata_schema, message_type):
def createElementsWithMetadata(X, names, results, metadata_schema, message_type, force_raw_value = False):
#we want field names from metadata if available - also build a dict of metadata by name for easy lookup
metadata_dict = {}

Expand Down Expand Up @@ -582,7 +590,6 @@ def createElementsWithMetadata(X, names, results, metadata_schema, message_type)
names.append(elem['name'])
metadata_dict[elem['name']] = elem


if isinstance(X, np.ndarray):
if len(X.shape) == 1:
if X.shape[0] != len(names):
Expand All @@ -594,9 +601,9 @@ def createElementsWithMetadata(X, names, results, metadata_schema, message_type)
d = {}
for num, name in enumerate(names, start=0):
if isinstance(X[i], bytes):
d[name] = lookupValueWithMetadata(name,metadata_dict,X[i].decode("utf-8"))
d[name] = lookupValueWithMetadata(name,metadata_dict,X[i].decode("utf-8"), force_raw_value)
else:
d[name] = lookupValueWithMetadata(name,metadata_dict,X[i])
d[name] = lookupValueWithMetadata(name,metadata_dict,X[i], force_raw_value)
temp_results.append(d)
results = mergeLinkedColumns(temp_results, metadata_dict)
elif len(X.shape) >= 2:
Expand All @@ -612,10 +619,10 @@ def createElementsWithMetadata(X, names, results, metadata_schema, message_type)
if isinstance(d[name], Iterable):
newlist = []
for val in d[name]:
newlist.append(lookupValueWithMetadata(name,metadata_dict,val))
newlist.append(lookupValueWithMetadata(name,metadata_dict,val), force_raw_value)
d[name] = newlist
else:
d[name] = lookupValueWithMetadata(name,metadata_dict,d[name])
d[name] = lookupValueWithMetadata(name,metadata_dict,d[name], force_raw_value)
temp_results.append(d)
results = mergeLinkedColumns(temp_results, metadata_dict)

Expand Down Expand Up @@ -663,14 +670,14 @@ def mergeLinkedColumns(raw_list, metadata_dict):

return new_list

def lookupValueWithMetadata(name, metadata_dict, raw_value):
def lookupValueWithMetadata(name, metadata_dict, raw_value, force_raw_value = False):
metadata_elem = metadata_dict[name]

if not metadata_elem:
return raw_value

#categorical currently only case where we replace value
if metadata_elem['type'] == "CATEGORICAL":
if metadata_elem['type'] == "CATEGORICAL" and not force_raw_value:

if metadata_elem['data_type'] == 'INT':
#need to convert raw vals back to ints as could have been floatified
Expand Down

0 comments on commit d1faf71

Please sign in to comment.