Skip to content

Benchmark Suite for Machine Learning Interatomic Potentials for Materials

License

Notifications You must be signed in to change notification settings

stanos4/mlearn

 
 

Repository files navigation

mlearn

The mlearn package is a benchmark suite for machine learning interatomic potentials for materials science. It enables a seamless way to develop various potentials and provides LAMMPS-driven properties predictor with developed potentials as plugins.

Installation

The usage of mlearn requires installation of specific packages and the plugins in LAMMPS. Please see detailed installation instructions for all descriptors.

Jupyter Notebook Examples

References

  • Gaussian Approximation Potential: Bartók, A. P.; Payne, M. C.; Kondor, R.; Csányi, G. Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons. Physical Review Letters 2010, 104, 136403. doi:10.1103/PhysRevLett.104.136403.
  • Moment Tensor Potential: Shapeev, A. V. Moment tensor potentials: A class of systematically improvable interatomic potentials. Multiscale Modeling & Simulation, 14(3), 1153-1173. doi:10.1137/15M1054183
  • Neural Network Potential: Behler, J., & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Physical Review Letters 2007, 98, 146401. doi:10.1103/PhysRevLett.98.146401
  • Spectral Neighbor Analysis Potential: Thompson, A. P., Swiler, L. P., Trott, C. R., Foiles, S. M., & Tucker, G. J. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. Journal of Computational Physics, 285, 316-330. doi:10.1016/j.jcp.12.018

About

Benchmark Suite for Machine Learning Interatomic Potentials for Materials

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 84.9%
  • Jupyter Notebook 15.1%