Skip to content

srinivasn462/MovieRecommendation-Python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 

Repository files navigation

MovieRecommendation-Python

The code uses Python syntax and libraries like pandas for data manipulation and numpy for numerical operations. It involves basic Python operations like variable assignment, function calls, and control flow statements. Data Analysis:

The code loads and processes data from files using pandas. It performs data aggregation and filtering operations, such as calculating mean ratings, counting occurrences, and filtering by specific criteria.

It uses only python, Machine learning not yet implemented. we can implement Collaborative Filtering

Collaborative Filtering

Code Example: import pandas as pd from scipy.spatial.distance import cosine

Load data ratings = pd.read_csv('ratings.csv')

Create user-item matrix user_item_matrix = ratings.pivot_table(index='user_id', columns='item_id', values='rating')

Calculate user similarities user_similarities = 1 - cosine(user_item_matrix.fillna(0).values)

Recommend items to a user def recommend(user_id, top_n=10): similar_users = user_similarities[user_id].argsort()[::-1][1:] recommendations = user_item_matrix.iloc[similar_users].mean(axis=0) return recommendations.sort_values(ascending=False).head(top_n)

Content-based Filtering

Code Example:

import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer

Load data items = pd.read_csv('items.csv')

Create item features tfidf_vectorizer = TfidfVectorizer(stop_words='english') item_features = tfidf_vectorizer.fit_transform(items['description'])

Calculate item similarities item_similarities = 1 - cosine(item_features.toarray())

Recommend items to a user based on their preferences def recommend(user_preferences, top_n=10): recommendations = item_similarities[user_preferences.nonzero()[0]].mean(axis=0) return recommendations.argsort()[::-1][:top_n]

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published