Skip to content

Commit

Permalink
Add var_sky array to mosaic and enable usage in drizzle weight image.
Browse files Browse the repository at this point in the history
  • Loading branch information
mairanteodoro committed Dec 9, 2024
1 parent 406409a commit ee3f001
Show file tree
Hide file tree
Showing 4 changed files with 41 additions and 9 deletions.
6 changes: 4 additions & 2 deletions romancal/regtest/test_resample.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,7 @@ def test_resample_single_file(rtdata, ignore_asdf_paths):
"var_poisson",
"var_rnoise",
"var_flat",
"var_sky",
]
)
}"""
Expand All @@ -76,6 +77,7 @@ def test_resample_single_file(rtdata, ignore_asdf_paths):
np.sum(~np.isnan(getattr(resample_out, x))) for x in [
"var_poisson",
"var_rnoise",
"var_sky",
]
)
}""" # noqa: E501
Expand All @@ -94,14 +96,14 @@ def test_resample_single_file(rtdata, ignore_asdf_paths):
np.isnan(getattr(resample_out, x)),
np.equal(getattr(resample_out, x), 0)
)
) > 0 for x in ["var_poisson", "var_rnoise", "var_flat"]
) > 0 for x in ["var_poisson", "var_rnoise", "var_flat", "var_sky"]
)
}"""
)
assert all(
np.sum(np.isnan(getattr(resample_out, x)))
for x in ["var_poisson", "var_rnoise", "var_flat"]
for x in ["var_poisson", "var_rnoise", "var_flat", "var_sky"]
)

step.log.info(
Expand Down
11 changes: 5 additions & 6 deletions romancal/resample/resample.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,6 +88,8 @@ def __init__(
)

self.input_models = input_models
# add sky variance array
resample_utils.add_var_sky_array(self.input_models)
self.output_filename = output
self.pscale_ratio = pscale_ratio
self.single = single
Expand Down Expand Up @@ -158,9 +160,6 @@ def __init__(
# f'Model cannot be instantiated.'
# )

# NOTE: wait for William to fix bug in datamodels' init and then
# use datamodels.ImageModel(shape=(nx, ny)) instead of mk_datamodel()

# n_images sets the number of context image planes.
# This should be 1 to start (not the default of 2).
self.blank_output = maker_utils.mk_datamodel(
Expand Down Expand Up @@ -198,6 +197,8 @@ def __init__(
self.blank_output["individual_image_cal_logs"] = [
model.meta.cal_logs for model in models
]
# add sky variance array
self.blank_output["var_sky"] = np.zeros_like(self.blank_output.var_flat)
for i, m in enumerate(models):
self.input_models.shelve(m, i, modify=False)

Expand Down Expand Up @@ -397,11 +398,11 @@ def resample_many_to_one(self):
self.resample_variance_array("var_rnoise", output_model)
self.resample_variance_array("var_poisson", output_model)
self.resample_variance_array("var_flat", output_model)
self.resample_variance_array("var_sky", output_model)

# Make exposure time image
exptime_tot = self.resample_exposure_time(output_model)

# TODO: fix unit here
output_model.err = np.sqrt(
np.nansum(
[
Expand All @@ -415,7 +416,6 @@ def resample_many_to_one(self):

self.update_exposure_times(output_model, exptime_tot)

# TODO: fix RAD to expect a context image datatype of int32
output_model.context = output_model.context.astype(np.uint32)

return ModelLibrary([output_model])
Expand Down Expand Up @@ -494,7 +494,6 @@ def resample_variance_array(self, name, output_model):

# We now have a sum of the inverse resampled variances. We need the
# inverse of that to get back to units of variance.
# TODO: fix unit here
output_variance = np.reciprocal(inverse_variance_sum)

setattr(output_model, name, output_variance)
Expand Down
31 changes: 31 additions & 0 deletions romancal/resample/resample_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
from stcal.alignment.util import wcs_from_footprints

from romancal.assign_wcs.utils import wcs_bbox_from_shape
from romancal.datamodels.library import ModelLibrary

log = logging.getLogger(__name__)
log.setLevel(logging.DEBUG)
Expand Down Expand Up @@ -163,6 +164,20 @@ def build_driz_weight(
elif weight_type == "exptime":
exptime = model.meta.exposure.exposure_time
result = exptime * dqmask
elif weight_type == "ivsky":
if (
hasattr(model, "var_sky")
and model.var_sky is not None
and model.var_sky.shape == model.data.shape
):
with np.errstate(divide="ignore", invalid="ignore"):
inv_sky_variance = model.var_sky**-1
inv_sky_variance[~np.isfinite(inv_sky_variance)] = 1
else:
warnings.warn(
"var_rnoise and var_poisson arrays are not available. Setting drizzle weight map to 1"
)
result = inv_sky_variance * dqmask
elif weight_type is None:
result = np.ones(model.data.shape, dtype=model.data.dtype) * dqmask
else:
Expand Down Expand Up @@ -401,3 +416,19 @@ def resample_range(data_shape, bbox=None):
ymax = min(data_shape[0] - 1, int(y2 + 0.5))

return xmin, xmax, ymin, ymax


def add_var_sky_array(input_models: ModelLibrary):
input_models = (
input_models
if isinstance(input_models, ModelLibrary)
else ModelLibrary([input_models])
)
with input_models:
ref_img = input_models.borrow(index=0)
var_sky = np.zeros_like(ref_img.data)
input_models.shelve(model=ref_img, index=0)
for i, img in enumerate(input_models):
var_sky += img.var_rnoise + img.var_poisson / img.data * np.median(img.data)
img["var_sky"] = var_sky
input_models.shelve(img, i, modify=True)
2 changes: 1 addition & 1 deletion romancal/resample/tests/test_resample.py
Original file line number Diff line number Diff line change
Expand Up @@ -679,7 +679,7 @@ def get_footprint(model, index):
np.testing.assert_allclose(output_max_value, expected_max_value)


@pytest.mark.parametrize("weight_type", ["ivm", "exptime"])
@pytest.mark.parametrize("weight_type", ["ivm", "exptime", "ivsky"])
def test_resampledata_do_drizzle_default_single_exposure_weight_array(
exposure_1,
weight_type,
Expand Down

0 comments on commit ee3f001

Please sign in to comment.