Skip to content

Openreviewers: Multi Agent Academic Review Simulation System

Notifications You must be signed in to change notification settings

songxxzp/OpenReviewers

Repository files navigation

OpenReviewers

Multi Agent Academic Review Simulation System

🤗 Model • 📚 Data • 📜 ArxivReviewers • 👨🏻‍🚀 OpenReviewer • 🖥️ OpenReviewers

OpenReviewers

OpenReviewers项目构建了一个基于多智能体的学术论文评审模拟系统。该系统通过训练多个智能体来模拟论文的审稿过程,包括审稿人智能体和会议主席智能体。审稿人智能体负责阅读论文并生成评审意见和评分,而会议主席智能体则根据多个审稿人的意见来给出最终录用决定。

系统使用OpenReview数据集进行监督式微调,构建了包含审稿意见与论文章节精确匹配的训练数据。实验结果显示,该系统可以有效地模拟审稿过程,生成高质量的评审意见和最终决定。

项目还构建了两个实际应用案例:

  1. ArxivReviewers:利用系统每日从Arxiv爬取论文,进行预评审,为用户推荐高质量论文。
  2. OpenReviewers:提供一个论文模拟评审网站,用户可以上传论文,获得模拟审稿人的评价和会议主席的录用建议。

这些应用案例展示了OpenReviewers系统的实际价值。未来,该项目将继续优化系统,提高评审质量,并为学术评审智能化做出贡献。

部署 OpenReviewers

1. 下载LoRA权重

Download

2. 下载vicuna-7b-v1.5-16k

Download

3. 合并权重

from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, PreTrainedModel, PreTrainedTokenizer
from peft import LoraConfig, get_peft_model, PeftModel

model_path = "vicuna-7b-v1.5-16k"
save_path = "2023_ac_v5_lr_1e4_epoch2"  # Area Chair
merged_path = "2023_ac_v5_lr_1e4_epoch2-injected"

model = AutoModelForCausalLM.from_pretrained(model_path, device_map='cpu')
model = PeftModel.from_pretrained(model, save_path, device_map='cpu')
model: PreTrainedModel = model.merge_and_unload()
model.save_pretrained(merged_path, safetensors=False)

tokenizer = AutoTokenizer.from_pretrained(model_path)
tokenizer.save_pretrained(merged_path)

save_path = "0101-v2-full"  # Reviewer
merged_path = "0101-v2-full-injected"

model = AutoModelForCausalLM.from_pretrained(model_path, device_map='cpu')
model = PeftModel.from_pretrained(model, save_path, device_map='cpu')
model: PreTrainedModel = model.merge_and_unload()
model.save_pretrained(merged_path, safetensors=False)

tokenizer = AutoTokenizer.from_pretrained(model_path)
tokenizer.save_pretrained(merged_path)

4. 启动 vllm 推理

python -m vllm.entrypoints.openai.api_server --model 2023_ac_v5_lr_1e4_epoch2-injected --tensor-parallel-size 1 --port 8001 --dtype half
python -m vllm.entrypoints.openai.api_server --model 0101-v2-full-injected --tensor-parallel-size 2 --port 39174 --dtype half

5. 启动 Demo

export reviewer_port=7680
export area_chair_port=7681

python3 reviewer.py --ac-path 2023_ac_v5_lr_1e4_epoch2-injected --re-path 0101-v2-full-injected --re-port 39174 --ac-port 8001 --server-port $reviewer_port

python3 area_chair.py --ac-path 2023_ac_v5_lr_1e4_epoch2-injected --re-path 0101-v2-full-injected --re-port 39174 --ac-port 8001 --server-port $area_chair_port

6. Review Your Paper!

OpenReviewers Interface

Web Demo

  • 审稿人Reviewer

    Reviewer Example
  • 区域主席Area Chair

    Area Chair Example1
    Area Chair Example2

About

Openreviewers: Multi Agent Academic Review Simulation System

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages