-
Notifications
You must be signed in to change notification settings - Fork 4.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
8a14296
commit 0465abf
Showing
2 changed files
with
142 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
# Credit-Only/Credit-Debit Transaction Accounts | ||
|
||
This design covers the handling of credit-only and credit-debit accounts in the | ||
[runtime](runtime.md). Accounts already distinguish themselves as credit-only or | ||
credit-debit based on the program ID specified by the transaction's instruction. | ||
Programs must treat accounts that are not owned by them as credit-only. | ||
|
||
To identify credit-only accounts by program id would require the account to be | ||
fetched and loaded from disk. This operation is expensive, and while it is | ||
occurring, the runtime would have to reject any transactions referencing the same | ||
account. | ||
|
||
The proposal introduces a `num_readonly_accounts` field to the transaction | ||
structure, and removes the `program_ids` dedicated vector for program accounts. | ||
|
||
This design doesn't change the runtime transaction processing rules. | ||
Programs still can't write or spend accounts that they do not own, but it | ||
allows the runtime to optimistically take the correct lock for each account | ||
specified in the transaction before loading the accounts from storage. | ||
|
||
Accounts selected as credit-debit by the transaction can still be treated as | ||
credit-only by the instructions. | ||
|
||
## Runtime handling | ||
|
||
credit-only accounts have the following properties: | ||
|
||
* Can be deposited into: Deposits can be implemented as a simple `atomic_add`. | ||
|
||
* credit-only access to account data. | ||
|
||
Instructions that debit or modify the credit-only account data will fail. | ||
|
||
## Account Lock Optimizations | ||
|
||
The Accounts module keeps track of current locked accounts in the runtime, | ||
which separates credit-only accounts from the credit-debit accounts. The credit-only | ||
accounts can be cached in memory and shared between all the threads executing | ||
transactions. | ||
|
||
The current runtime can't predict whether an account is credit-only or credit-debit when | ||
the transaction account keys are locked at the start of the transaction | ||
processing pipeline. Accounts referenced by the transaction have not been | ||
loaded from the disk yet. | ||
|
||
An ideal design would cache the credit-only accounts while they are referenced by | ||
any transaction moving through the runtime, and release the cache when the last | ||
transaction exits the runtime. | ||
|
||
## Credit-only accounts and read-only account data | ||
|
||
Credit-only account data can be treated as read-only. Credit-debit | ||
account data is treated as read-write. | ||
|
||
## Transaction changes | ||
|
||
To enable the possibility of caching accounts only while they are in the | ||
runtime, the Transaction structure should be changed in the following way: | ||
|
||
* `program_ids: Vec<Pubkey>` - This vector is removed. Program keys can be | ||
placed at the end of the `account_keys` vector within the `num_readonly_accounts` | ||
number set to the number of programs. | ||
|
||
* `num_readonly_accounts: u8` - The number of keys from the **end** of the | ||
transaction's `account_keys` array that is credit-only. | ||
|
||
The following possible accounts are present in an transaction: | ||
|
||
* paying account | ||
* RW accounts | ||
* R accounts | ||
* Program IDs | ||
|
||
The paying account must be credit-debit, and program IDs must be credit-only. The | ||
first account in the `account_keys` array is always the account that pays for | ||
the transaction fee, therefore it cannot be credit-only. For these reasons the | ||
credit-only accounts are all grouped together at the end of the `account_keys` | ||
vector. Counting credit-only accounts from the end allow for the default `0` | ||
value to still be functionally correct, since a transaction will succeed with | ||
all credit-debit accounts. | ||
|
||
Since accounts can only appear once in the transaction's `account_keys` array, | ||
an account can only be credit-only or credit-debit in a single transaction, not | ||
both. The runtime treats a transaction as one atomic unit of execution. If any | ||
instruction needs credit-debit access to an account, a copy needs to be made. The | ||
write lock is held for the entire time the transaction is being processed by | ||
the runtime. | ||
|
||
## Starvation | ||
|
||
Read locks for credit-only accounts can keep the runtime from executing | ||
transactions requesting a write lock to a credit-debit account. | ||
|
||
When a request for a write lock is made while a read lock is open, the | ||
transaction requesting the write lock should be cached. Upon closing the read | ||
lock, the pending transactions can be pushed through the runtime. | ||
|
||
While a pending write transaction exists, any additional read lock requests for | ||
that account should fail. It follows that any other write lock requests will also | ||
fail. Currently, clients must retransmit when a transaction fails because of | ||
a pending transaction. This approach would mimic that behavior as closely as | ||
possible while preventing write starvation. | ||
|
||
## Program execution with credit-only accounts | ||
|
||
Before handing off the accounts to program execution, the runtime can mark each | ||
account in each instruction as a credit-only account. The credit-only accounts can | ||
be passed as references without an extra copy. The transaction will abort on a | ||
write to credit-only. | ||
|
||
An alternative is to detect writes to credit-only accounts and fail the | ||
transactions before commit. | ||
|
||
## Alternative design | ||
|
||
This design attempts to cache a credit-only account after loading without the use | ||
of a transaction-specified credit-only accounts list. Instead, the credit-only | ||
accounts are held in a reference-counted table inside the runtime as the | ||
transactions are processed. | ||
|
||
1. Transaction accounts are locked. | ||
a. If the account is present in the ‘credit-only' table, the TX does not fail. | ||
The pending state for this TX is marked NeedReadLock. | ||
2. Transaction accounts are loaded. | ||
a. Transaction accounts that are credit-only increase their reference | ||
count in the `credit-only` table. | ||
b. Transaction accounts that need a write lock and are present in the | ||
`credit-only` table fail. | ||
3. Transaction accounts are unlocked. | ||
a. Decrement the `credit-only` lock table reference count; remove if its 0 | ||
b. Remove from the `lock` set if the account is not in the `credit-only` | ||
table. | ||
|
||
The downside with this approach is that if the `lock` set mutex is released | ||
between lock and load to allow better pipelining of transactions, a request for | ||
a credit-only account may fail. Therefore, this approach is not suitable for | ||
treating programs as credit-only accounts. | ||
|
||
Holding the accounts lock mutex while fetching the account from disk would | ||
potentially have a significant performance hit on the runtime. Fetching from | ||
disk is expected to be slow, but can be parallelized between multiple disks. |