Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Benchmark gap encoder early stopping #681

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
339 changes: 339 additions & 0 deletions benchmarks/bench_gap_es_score.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,339 @@
"""
Benchmark hyperparameters of GapEncoder on traffic_violations dataset
"""

from utils import default_parser, find_result, monitor
from time import perf_counter
import numpy as np
import pandas as pd
from skrub.datasets import fetch_traffic_violations
from sklearn.model_selection import train_test_split
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.metrics import roc_auc_score, balanced_accuracy_score
from skrub import GapEncoder
from skrub._gap_encoder import (
GapEncoderColumn,
_beta_divergence,
batch_lookup,
_multiplicative_update_h,
_multiplicative_update_w,
)
import seaborn as sns
import matplotlib.pyplot as plt


class ModifiedGapEncoderColumn(GapEncoderColumn):
def __init__(self, *args, **kwargs):
if "max_no_improvement" in kwargs:
self.max_no_improvement = kwargs.pop("max_no_improvement")
if "verbose" in kwargs:
self.verbose = kwargs.pop("verbose")
super().__init__(*args, **kwargs)

def _minibatch_convergence(self, batch_size, batch_cost, n_samples, step, n_steps):
"""Helper function to encapsulate the early stopping logic"""
# adapted from sklearn.decomposition.MiniBatchNMF

# counts steps starting from 1 for user friendly verbose mode.
step = step + 1

# Ignore first iteration because H is not updated yet.
if step == 1:
if self.verbose:
print(f"Minibatch step {step}/{n_steps}: mean batch cost: {batch_cost}")
return False

# Compute an Exponentially Weighted Average of the cost function to
# monitor the convergence while discarding minibatch-local stochastic
# variability: https://en.wikipedia.org/wiki/Moving_average
LeoGrin marked this conversation as resolved.
Show resolved Hide resolved
if self._ewa_cost is None:
self._ewa_cost = batch_cost
else:
alpha = batch_size / (n_samples + 1)
alpha = min(alpha, 1)
self._ewa_cost = self._ewa_cost * (1 - alpha) + batch_cost * alpha

# Log progress to be able to monitor convergence
if self.verbose:
print(
f"Minibatch step {step}/{n_steps}: mean batch cost: "
f"{batch_cost}, ewa cost: {self._ewa_cost}"
)

# Early stopping heuristic due to lack of improvement on smoothed
# cost function
if self._ewa_cost_min is None or self._ewa_cost < self._ewa_cost_min:
self._no_improvement = 0
self._ewa_cost_min = self._ewa_cost
else:
self._no_improvement += 1

if (
self.max_no_improvement is not None
and self._no_improvement >= self.max_no_improvement
):
if self.verbose:
print(
"Converged (lack of improvement in objective function) "
f"at step {step}/{n_steps}"
)
return True

return False

def fit(self, X, y=None) -> "GapEncoderColumn":
"""
Fit the GapEncoder on `X`.

Parameters
----------
X : array-like, shape (n_samples, )
The string data to fit the model on.
y : None
Unused, only here for compatibility.

Returns
-------
GapEncoderColumn
The fitted GapEncoderColumn instance (self).
"""
# Copy parameter rho
self.rho_ = self.rho
# Attributes to monitor the convergence
self._ewa_cost = None
self._ewa_cost_min = None
self._no_improvement = 0
# Check if first item has str or np.str_ type
assert isinstance(X[0], str), "Input data is not string. "
# Make n-grams counts matrix unq_V
unq_X, unq_V, lookup = self._init_vars(X)
n_batch = (len(X) - 1) // self.batch_size + 1
n_samples = len(X)
del X
# Get activations unq_H
unq_H = self._get_H(unq_X)

for n_iter_ in range(self.max_iter):
# Loop over batches
for i, (unq_idx, idx) in enumerate(batch_lookup(lookup, n=self.batch_size)):
# Update activations unq_H
unq_H[unq_idx] = _multiplicative_update_h(
unq_V[unq_idx],
self.W_,
unq_H[unq_idx],
epsilon=1e-3,
max_iter=self.max_iter_e_step,
rescale_W=self.rescale_W,
gamma_shape_prior=self.gamma_shape_prior,
gamma_scale_prior=self.gamma_scale_prior,
)
# Update the topics self.W_
_multiplicative_update_w(
unq_V[idx],
self.W_,
self.A_,
self.B_,
unq_H[idx],
self.rescale_W,
self.rho_,
)
batch_cost = _beta_divergence(
unq_V[idx],
unq_H[idx],
self.W_,
"kullback-leibler",
square_root=False,
)
if self._minibatch_convergence(
batch_size=len(idx),
batch_cost=batch_cost,
n_samples=n_samples,
step=n_iter_ * n_batch + i,
n_steps=self.max_iter * n_batch,
):
break
else:
# only continue if no break occurred
continue
break

# Update self.H_dict_ with the learned encoded vectors (activations)
self.H_dict_.update(zip(unq_X, unq_H))
return self


class ModifiedGapEncoder(GapEncoder):
fitted_models_: list[ModifiedGapEncoderColumn]

def _create_column_gap_encoder(self):
return ModifiedGapEncoderColumn(
ngram_range=self.ngram_range,
n_components=self.n_components,
analyzer=self.analyzer,
gamma_shape_prior=self.gamma_shape_prior,
gamma_scale_prior=self.gamma_scale_prior,
rho=self.rho,
rescale_rho=self.rescale_rho,
batch_size=self.batch_size,
tol=self.tol,
hashing=self.hashing,
hashing_n_features=self.hashing_n_features,
max_iter=self.max_iter,
init=self.init,
add_words=self.add_words,
random_state=self.random_state,
rescale_W=self.rescale_W,
max_iter_e_step=self.max_iter_e_step,
max_no_improvement=10,
verbose=True,
)


###############################################################
# Benchmarking accuracy and speed on traffic_violations dataset
###############################################################

benchmark_name = "gap_encoder_benchmark_es_score"


@monitor(
memory=True,
time=True,
parametrize={
"high_card_feature": [
"seqid",
"description",
"location",
"search_reason_for_stop",
"state",
"charge",
"driver_city",
"driver_state",
"dl_state",
],
"max_rows": [5_000, 20_000, 50_000],
"modif": [True, False],
},
save_as=benchmark_name,
repeat=2,
)
def benchmark(
high_card_feature: str,
max_rows: int,
modif: bool,
):
ds = fetch_traffic_violations()
X = np.array(ds.X[high_card_feature]).reshape(-1, 1).astype(str)
y = ds.y
# only keep the first max_rows rows
# split the data into train and test
X_train, X_test, y_train, y_test = train_test_split(
X[:max_rows],
y[:max_rows],
test_size=0.2,
)
if not modif:
gap = GapEncoder(batch_size=512)
else:
gap = ModifiedGapEncoder(verbose=False, batch_size=512)
start_time = perf_counter()
gap.fit(X_train)
end_time = perf_counter()
score_train = gap.score(X_train)
score_test = gap.score(X_test)

# evaluate the accuracy using the encoding
X_train_encoded = gap.transform(X_train)
X_test_encoded = gap.transform(X_test)

clf = HistGradientBoostingClassifier()
clf.fit(X_train_encoded, y_train)
roc_auc_hgb_train = roc_auc_score(
y_train, clf.predict_proba(X_train_encoded), multi_class="ovr"
)
roc_auc_hgb_test = roc_auc_score(
y_test, clf.predict_proba(X_test_encoded), multi_class="ovr"
)
balanced_accuracy_hgb_train = balanced_accuracy_score(
y_train, clf.predict(X_train_encoded)
)
balanced_accuracy_hgb_test = balanced_accuracy_score(
y_test, clf.predict(X_test_encoded)
)

res_dic = {
"time_fit": end_time - start_time,
"score_train": score_train,
"score_test": score_test,
"roc_auc_hgb_train": roc_auc_hgb_train,
"roc_auc_hgb_test": roc_auc_hgb_test,
"balanced_accuracy_hgb_train": balanced_accuracy_hgb_train,
"balanced_accuracy_hgb_test": balanced_accuracy_hgb_test,
"train_size": X_train.shape[0],
"test_size": X_test.shape[0],
}

return res_dic


def plot(df: pd.DataFrame):
sns.lineplot(
x="train_size", y="time_fit", data=df, hue="high_card_feature", style="modif"
)
plt.yscale("log")
# put the legend out of the figure
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0)
plt.ylabel("Time (s)")
plt.xlabel("Train size")
plt.title("Time to fit the encoder")
# make sure the plot is not cut
plt.tight_layout()
plt.show()

sns.lineplot(
x="train_size", y="score_train", data=df, hue="high_card_feature", style="modif"
)
plt.yscale("log")
# put the legend out of the figure
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0)
plt.ylabel("Score")
plt.xlabel("Train size")
plt.title("Score on train set")
# make sure the plot is not cut
plt.tight_layout()
plt.show()

sns.lineplot(
x="train_size",
y="balanced_accuracy_hgb_test",
data=df,
hue="high_card_feature",
style="modif",
)
plt.yscale("log")
# put the legend out of the figure
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0)
plt.ylabel("Balanced accuracy")
plt.xlabel("Train size")
plt.title("Balanced accuracy on test set")
# make sure the plot is not cut
plt.tight_layout()
plt.show()


if __name__ == "__main__":
from argparse import ArgumentParser

_args = ArgumentParser(
description="Benchmark for the batch feature of the MinHashEncoder.",
parents=[default_parser],
).parse_args()

if _args.run:
df = benchmark()
else:
result_file = find_result(benchmark_name)
df = pd.read_parquet(result_file)

if _args.plot:
plot(df)
Binary file not shown.