-
My fork's name was n_gpu, but I find that if we want to uninstall it , we should use
pip uninstall gpustat
, so the n_gpu is missing. So switch back to gpustat. -
For better experience for Chinese users, I mainly focus on https://gitee.com/llwwff/gpustat instead of github' s repo
n_gpu: number of available gpu / new gpu command, do not use the ugly nvidia-smi anymore.
python -m pip install git+https://github.com/sisrfeng/n_gpu
-
forked from wookayin/gpustat (v0.6) (The original repo' s version is higher now, but I'm quite satisfied with this version.)
-
The code is not complex:
gpu_stats
in main.py callprint_formatted(sys.stdout, **kwargs)
in core.py.
I just modified the two files above.
nvidia-smi
then set CUDA_VISIBLE_DEVICES
manually?
I have not typed these two for a long time.
source alias.zsh
in your zshrc file, then type p
in zsh instead of python3
See ./find_gpus.py and alias.zsh before you use them!
no AMD support as of now
$ gpustat
Options:
--color
: Force colored output (even when stdout is not a tty)--no-color
: Suppress colored output-u
,--show-user
: Display username of the process owner-c
,--show-cmd
: Display the process name-f
,--show-full-cmd
: Display full command and cpu stats of running process-p
,--show-pid
: Display PID of the process-F
,--show-fan
: Display GPU fan speed-e
,--show-codec
: Display encoder and/or decoder utilization-P
,--show-power
: Display GPU power usage and/or limit (draw
ordraw,limit
)-a
,--show-all
: Display all gpu properties above--watch
,-i
,--interval
: Run in watch mode (equivalent towatch gpustat
) if given. Denotes interval between updates. (#41)--json
: JSON Output (Experimental, #10)
- To periodically watch,
try
gpustat --watch
orgpustat -i
(#41).- For older versions,
one may use
watch --color -n1.0 gpustat --color
.
- For older versions,
one may use
- Running
nvidia-smi daemon
(root privilege required) will make the query much faster and use less CPU (#54). - The GPU ID (index) shown by
gpustat
(andnvidia-smi
) is PCI BUS ID, while CUDA differently assigns the fastest GPU with the lowest ID by default. Therefore, in order to make CUDA andgpustat
use same GPU index, configure theCUDA_DEVICE_ORDER
environment variable toPCI_BUS_ID
(before settingCUDA_VISIBLE_DEVICES
for your CUDA program):export CUDA_DEVICE_ORDER=PCI_BUS_ID
.
Starting from v1.0, gpustat will support only Python 3.4+.
[0] GeForce GTX Titan X | 77'C, 96 % | 11848 / 12287 MB | python/52046(11821M)
[0]
: GPUindex (starts from 0) as PCI_BUS_IDGeForce GTX Titan X
: GPU name77'C
: Temperature96 %
: Utilization11848 / 12287 MB
: GPU Memory Usagepython/...
: Running processes on GPU (and their memory usage)