Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

soma.X.data -> soma.X["data"] #142

Merged
merged 1 commit into from
Jun 1, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
92 changes: 57 additions & 35 deletions apis/python/README-ingestion.md
Original file line number Diff line number Diff line change
Expand Up @@ -177,40 +177,51 @@ $ python
>>> import tiledbsc

>>> soma = tiledbsc.SOMA('tiledb-data/pbmc-small')
>>> arr = soma.X.data.open_array()
>>> arr.df[:]
obs_id var_id value
0 AAATTCGAATCACG AKR1C3 -0.325888
1 AAATTCGAATCACG CA2 -0.346938
... ... ... ...
1598 TTTAGCTGTACTCT TUBB1 -0.350375
1599 TTTAGCTGTACTCT VDAC3 -0.524551

[1600 rows x 3 columns]
>>> soma.X["data"].df()
value
obs_id var_id
AAATTCGAATCACG AKR1C3 -0.325888
CA2 -0.346938
CD1C -0.253005
GNLY -0.528670
HLA-DPB1 -1.039994
... ...
TTTAGCTGTACTCT S100A9 1.112879
SDPR -0.388176
TREML1 -0.328625
TUBB1 -0.350375
VDAC3 -0.524551

[1600 rows x 1 columns]
-- Note this is a sparse matrix in IJV/COO format
```

```
>>> arr = soma.obs.open_array()
>>> arr.df[:]
>>> soma.obs.df()
orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups RNA_snn_res.1
obs_id
AAATTCGAATCACG 0 327.0 62 1 1 g2 1
AAGCAAGAGCTTAG 0 126.0 48 0 0 g1 0
AAGCGACTTTGACG 0 443.0 77 1 1 g1 1
AATGCGTGGACGGA 0 389.0 73 1 1 g1 1
AATGTTGACAGTCA 0 100.0 41 0 0 g1 0
... ... ... ... ... ... ... ...
TTACGTACGTTCAG 0 228.0 39 0 0 g1 0
TTGAGGACTACGCA 0 787.0 88 0 0 g1 2
TTGCATTGAGCTAC 0 104.0 40 0 0 g2 2
TTGGTACTGAATCC 0 135.0 45 0 0 g1 2
TTTAGCTGTACTCT 0 462.0 86 1 1 g1 1

[80 rows x 7 columns]

>>> arr = soma.var.open_array()
>>> arr.df[:]
vst.mean vst.variance vst.variance.expected vst.variance.standardized vst.variable
var_id
AKR1C3 0.2625 1.132753 0.553424 2.021191 1
CA2 0.4500 3.263291 1.685451 1.765922 1
CD1C 0.1750 0.576582 0.271217 2.052014 1
GNLY 2.4000 43.762025 24.078566 1.817468 1
...
SDPR 1.1125 15.746677 8.835280 1.680686 1
TREML1 0.3375 1.365665 0.761869 1.792519 1
TUBB1 0.8875 16.202373 6.352400 1.634371 1
VDAC3 1.1250 30.971519 8.986513 2.137607 1
Expand All @@ -219,30 +230,41 @@ VDAC3 1.1250 30.971519 8.986513 2
```
>>> soma.obsm._get_member_names()
['X_tsne', 'X_pca']
>>> arr = soma.obsm['X_pca'].open_array()
>>> arr.df[:]
obs_id X_pca_1 X_pca_2 ... X_pca_18 X_pca_19
0 AAATTCGAATCACG -0.599730 0.970809 ... -0.127195 0.026804
1 AAGCAAGAGCTTAG -0.919219 -2.043828 ... 0.009386 -0.019896
2 AAGCGACTTTGACG -1.380380 1.284101 ... -0.041855 0.027550
.. ... ... ... ... ... ...
78 TTGGTACTGAATCC -1.418764 0.764986 ... -0.064450 0.099118
79 TTTAGCTGTACTCT -1.447483 1.583223 ... -0.014984 0.033992

[80 rows x 20 columns]
>>> soma.obsm['X_pca'].df()
X_pca_1 X_pca_2 ... X_pca_18 X_pca_19
obs_id ...
AAATTCGAATCACG -0.599730 0.970809 ... -0.127195 0.026804
AAGCAAGAGCTTAG -0.919219 -2.043828 ... 0.009386 -0.019896
AAGCGACTTTGACG -1.380380 1.284101 ... -0.041855 0.027550
AATGCGTGGACGGA -1.494413 1.783583 ... -0.045108 0.055206
AATGTTGACAGTCA -0.487798 -1.162107 ... -0.167920 0.026950
... ... ... ... ... ...
TTACGTACGTTCAG 8.858789 -0.195728 ... -0.428616 -0.294552
TTGAGGACTACGCA -0.917909 1.610199 ... -0.113981 -0.110469
TTGCATTGAGCTAC -0.997103 -0.155518 ... 0.056784 -0.027052
TTGGTACTGAATCC -1.418764 0.764986 ... -0.064450 0.099118
TTTAGCTGTACTCT -1.447483 1.583223 ... -0.014984 0.033992

[80 rows x 19 columns]
```

```
>>> arr = soma.raw.X.data.open_array()
>>> arr.df[:]
obs_id var_id value
0 AAATTCGAATCACG ADAR 3.452557
1 AAATTCGAATCACG AIF1 3.452557
... ... ... ...
4454 TTTAGCTGTACTCT XBP1 3.119940
4455 TTTAGCTGTACTCT ZFP36L1 3.119940

[4456 rows x 3 columns]
>>> soma.raw.X["data"].df()
value
obs_id var_id
AAATTCGAATCACG ADAR 3.452557
AIF1 3.452557
ANXA2 3.452557
ARHGDIA 3.452557
ASGR1 3.452557
... ...
TTTAGCTGTACTCT TYMP 4.693411
TYROBP 5.277120
VPS28 3.119940
XBP1 3.119940
ZFP36L1 3.119940

[4456 rows x 1 columns]
```

```
Expand Down
93 changes: 58 additions & 35 deletions apis/python/doc/README-ingestion.md
Original file line number Diff line number Diff line change
Expand Up @@ -177,40 +177,52 @@ $ python
>>> import tiledbsc

>>> soma = tiledbsc.SOMA('tiledb-data/pbmc-small')
>>> arr = soma.X.data.open_array()
>>> arr.df[:]
obs_id var_id value
0 AAATTCGAATCACG AKR1C3 -0.325888
1 AAATTCGAATCACG CA2 -0.346938
... ... ... ...
1598 TTTAGCTGTACTCT TUBB1 -0.350375
1599 TTTAGCTGTACTCT VDAC3 -0.524551

[1600 rows x 3 columns]
>>> soma.X["data"].df()
value
obs_id var_id
AAATTCGAATCACG AKR1C3 -0.325888
CA2 -0.346938
CD1C -0.253005
GNLY -0.528670
HLA-DPB1 -1.039994
... ...
TTTAGCTGTACTCT S100A9 1.112879
SDPR -0.388176
TREML1 -0.328625
TUBB1 -0.350375
VDAC3 -0.524551

[1600 rows x 1 columns]
-- Note this is a sparse matrix in IJV/COO format
```

```
>>> arr = soma.obs.open_array()
>>> arr.df[:]
>>> soma.obs.df()
orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups RNA_snn_res.1
obs_id
AAATTCGAATCACG 0 327.0 62 1 1 g2 1
AAGCAAGAGCTTAG 0 126.0 48 0 0 g1 0
AAGCGACTTTGACG 0 443.0 77 1 1 g1 1
AATGCGTGGACGGA 0 389.0 73 1 1 g1 1
AATGTTGACAGTCA 0 100.0 41 0 0 g1 0
... ... ... ... ... ... ... ...
TTACGTACGTTCAG 0 228.0 39 0 0 g1 0
TTGAGGACTACGCA 0 787.0 88 0 0 g1 2
TTGCATTGAGCTAC 0 104.0 40 0 0 g2 2
TTGGTACTGAATCC 0 135.0 45 0 0 g1 2
TTTAGCTGTACTCT 0 462.0 86 1 1 g1 1

[80 rows x 7 columns]

>>> arr = soma.var.open_array()
>>> arr.df[:]
>>> soma.var.df()
vst.mean vst.variance vst.variance.expected vst.variance.standardized vst.variable
var_id
AKR1C3 0.2625 1.132753 0.553424 2.021191 1
CA2 0.4500 3.263291 1.685451 1.765922 1
CD1C 0.1750 0.576582 0.271217 2.052014 1
GNLY 2.4000 43.762025 24.078566 1.817468 1
...
SDPR 1.1125 15.746677 8.835280 1.680686 1
TREML1 0.3375 1.365665 0.761869 1.792519 1
TUBB1 0.8875 16.202373 6.352400 1.634371 1
VDAC3 1.1250 30.971519 8.986513 2.137607 1
Expand All @@ -219,30 +231,41 @@ VDAC3 1.1250 30.971519 8.986513 2
```
>>> soma.obsm._get_member_names()
['X_tsne', 'X_pca']
>>> arr = soma.obsm['X_pca'].open_array()
>>> arr.df[:]
obs_id X_pca_1 X_pca_2 ... X_pca_18 X_pca_19
0 AAATTCGAATCACG -0.599730 0.970809 ... -0.127195 0.026804
1 AAGCAAGAGCTTAG -0.919219 -2.043828 ... 0.009386 -0.019896
2 AAGCGACTTTGACG -1.380380 1.284101 ... -0.041855 0.027550
.. ... ... ... ... ... ...
78 TTGGTACTGAATCC -1.418764 0.764986 ... -0.064450 0.099118
79 TTTAGCTGTACTCT -1.447483 1.583223 ... -0.014984 0.033992

[80 rows x 20 columns]
>>> soma.obsm['X_pca'].df()
X_pca_1 X_pca_2 ... X_pca_18 X_pca_19
obs_id ...
AAATTCGAATCACG -0.599730 0.970809 ... -0.127195 0.026804
AAGCAAGAGCTTAG -0.919219 -2.043828 ... 0.009386 -0.019896
AAGCGACTTTGACG -1.380380 1.284101 ... -0.041855 0.027550
AATGCGTGGACGGA -1.494413 1.783583 ... -0.045108 0.055206
AATGTTGACAGTCA -0.487798 -1.162107 ... -0.167920 0.026950
... ... ... ... ... ...
TTACGTACGTTCAG 8.858789 -0.195728 ... -0.428616 -0.294552
TTGAGGACTACGCA -0.917909 1.610199 ... -0.113981 -0.110469
TTGCATTGAGCTAC -0.997103 -0.155518 ... 0.056784 -0.027052
TTGGTACTGAATCC -1.418764 0.764986 ... -0.064450 0.099118
TTTAGCTGTACTCT -1.447483 1.583223 ... -0.014984 0.033992

[80 rows x 19 columns]
```

```
>>> arr = soma.raw.X.data.open_array()
>>> arr.df[:]
obs_id var_id value
0 AAATTCGAATCACG ADAR 3.452557
1 AAATTCGAATCACG AIF1 3.452557
... ... ... ...
4454 TTTAGCTGTACTCT XBP1 3.119940
4455 TTTAGCTGTACTCT ZFP36L1 3.119940

[4456 rows x 3 columns]
>>> soma.raw.X["data"].df()
value
obs_id var_id
AAATTCGAATCACG ADAR 3.452557
AIF1 3.452557
ANXA2 3.452557
ARHGDIA 3.452557
ASGR1 3.452557
... ...
TTTAGCTGTACTCT TYMP 4.693411
TYROBP 5.277120
VPS28 3.119940
XBP1 3.119940
ZFP36L1 3.119940

[4456 rows x 1 columns]
```

```
Expand Down
4 changes: 2 additions & 2 deletions apis/python/doc/assay_matrix.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,8 +31,8 @@ See the TileDBObject constructor.

The `row_dataframe` and `col_dataframe` are nominally:

* `soma.obs` and `soma.var`, for `soma.X.data`
* `soma.obs` and `soma.raw.var`, for `soma.raw.X.data`
* `soma.obs` and `soma.var`, for `soma.X["data"]`
* `soma.obs` and `soma.raw.var`, for `soma.raw.X["data"]`
* `soma.obs` and `soma.obs`, for `soma.obsp` elements
* `soma.var` and `soma.var`, for `soma.obsp` elements

Expand Down
2 changes: 1 addition & 1 deletion apis/python/examples/anndata-and-tiledb.md
Original file line number Diff line number Diff line change
Expand Up @@ -114,7 +114,7 @@ ZYX 403

[1838 rows x 1 columns]

>>> soma.X.data.df()
>>> soma.X["data"].df()
value
obs_id var_id
AAACATACAACCAC-1 AAGAB -0.186726
Expand Down
4 changes: 2 additions & 2 deletions apis/python/src/tiledbsc/assay_matrix.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,8 +43,8 @@ def __init__(

The `row_dataframe` and `col_dataframe` are nominally:

* `soma.obs` and `soma.var`, for `soma.X.data`
* `soma.obs` and `soma.raw.var`, for `soma.raw.X.data`
* `soma.obs` and `soma.var`, for `soma.X["data"]`
* `soma.obs` and `soma.raw.var`, for `soma.raw.X["data"]`
* `soma.obs` and `soma.obs`, for `soma.obsp` elements
* `soma.var` and `soma.var`, for `soma.obsp` elements

Expand Down
Loading