-
Notifications
You must be signed in to change notification settings - Fork 25
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[python] Add MultiscaleImage level SpatialData exporter (#3342)
Add support for exporting a single resolution level of `MultiscaleImage` to a SpatialData Image2DModel or Image3DModel.
- Loading branch information
Showing
2 changed files
with
209 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,135 @@ | ||
from urllib.parse import urljoin | ||
|
||
import numpy as np | ||
import pyarrow as pa | ||
import pytest | ||
import somacore | ||
|
||
import tiledbsoma as soma | ||
|
||
soma_outgest = pytest.importorskip("tiledbsoma.experimental.outgest") | ||
sd = pytest.importorskip("spatialdata") | ||
xr = pytest.importorskip("xarray") | ||
|
||
|
||
@pytest.fixture(scope="module") | ||
def sample_2d_data(): | ||
return [ | ||
np.random.randint(0, 255, size=(3, 32, 32), dtype=np.uint8), | ||
np.random.randint(0, 255, size=(3, 16, 16), dtype=np.uint8), | ||
np.random.randint(0, 255, size=(3, 8, 8), dtype=np.uint8), | ||
] | ||
|
||
|
||
@pytest.fixture(scope="module") | ||
def sample_multiscale_image_2d(tmp_path_factory, sample_2d_data): | ||
# Create the multiscale image. | ||
baseuri = tmp_path_factory.mktemp("export_multiscale_image").as_uri() | ||
image_uri = urljoin(baseuri, "default") | ||
with soma.MultiscaleImage.create( | ||
image_uri, | ||
type=pa.uint8(), | ||
coordinate_space=("x_image", "y_image"), | ||
level_shape=(3, 32, 32), | ||
) as image: | ||
coords = (slice(None), slice(None), slice(None)) | ||
# Create levels. | ||
l0 = image["level0"] | ||
l0.write(coords, pa.Tensor.from_numpy(sample_2d_data[0])) | ||
|
||
# Create medium sized downsample. | ||
l1 = image.add_new_level("level1", shape=(3, 16, 16)) | ||
l1.write(coords, pa.Tensor.from_numpy(sample_2d_data[1])) | ||
|
||
# Create very small downsample and write to it. | ||
l2 = image.add_new_level("level2", shape=(3, 8, 8)) | ||
l2.write(coords, pa.Tensor.from_numpy(sample_2d_data[2])) | ||
image2d = soma.MultiscaleImage.open(image_uri) | ||
return image2d | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"level,transform,expected_transformation", | ||
[ | ||
( | ||
0, | ||
somacore.IdentityTransform(("x_scene", "y_scene"), ("x_image", "y_image")), | ||
sd.transformations.Identity(), | ||
), | ||
( | ||
2, | ||
somacore.IdentityTransform(("x_scene", "y_scene"), ("x_image", "y_image")), | ||
sd.transformations.Scale([4, 4], ("x", "y")), | ||
), | ||
( | ||
0, | ||
somacore.ScaleTransform( | ||
("x_scene", "y_scene"), ("x_image", "y_image"), [0.25, 0.5] | ||
), | ||
sd.transformations.Scale([4, 2], ("x", "y")), | ||
), | ||
( | ||
2, | ||
somacore.ScaleTransform( | ||
("x_scene", "y_scene"), ("x_image", "y_image"), [0.25, 0.5] | ||
), | ||
sd.transformations.Scale([16, 8], ("x", "y")), | ||
), | ||
( | ||
0, | ||
somacore.AffineTransform( | ||
("x_scene", "y_scene"), ("x_image", "y_image"), [[1, 0, 1], [0, 1, 2]] | ||
), | ||
sd.transformations.Affine( | ||
np.array([[1, 0, -1], [0, 1, -2], [0, 0, 1]]), | ||
("x", "y"), | ||
("x", "y"), | ||
), | ||
), | ||
( | ||
2, | ||
somacore.AffineTransform( | ||
("x_scene", "y_scene"), ("x_image", "y_image"), [[1, 0, 1], [0, 1, 2]] | ||
), | ||
sd.transformations.Sequence( | ||
[ | ||
sd.transformations.Scale([4, 4], ("x", "y")), | ||
sd.transformations.Affine( | ||
np.array([[1, 0, -1], [0, 1, -2], [0, 0, 1]]), | ||
("x", "y"), | ||
("x", "y"), | ||
), | ||
] | ||
), | ||
), | ||
], | ||
) | ||
def test_export_image_level_to_spatial_data( | ||
sample_multiscale_image_2d, | ||
sample_2d_data, | ||
level, | ||
transform, | ||
expected_transformation, | ||
): | ||
image2d = soma_outgest.to_spatial_data_image( | ||
sample_multiscale_image_2d, | ||
level=level, | ||
scene_id="scene0", | ||
scene_dim_map={"x_scene": "x", "y_scene": "y"}, | ||
transform=transform, | ||
) | ||
|
||
assert isinstance(image2d, xr.DataArray) | ||
|
||
# Validate the model. | ||
schema = sd.models.get_model(image2d) | ||
assert schema == sd.models.Image2DModel | ||
|
||
# Check the correct data exists. | ||
result = image2d.data.compute() | ||
np.testing.assert_equal(result, sample_2d_data[level]) | ||
|
||
# Check the metadata. | ||
metadata = dict(image2d.attrs) | ||
assert len(metadata) == 1 | ||
assert metadata["transform"] == {"scene0": expected_transformation} |