Skip to content

Commit

Permalink
BUG: groupby().rolling(freq) with monotonic dates within groups panda…
Browse files Browse the repository at this point in the history
…s-dev#46065  (pandas-dev#46567)

(cherry picked from commit d2aa44f)
  • Loading branch information
mroeschke authored and simonjayhawkins committed Apr 1, 2022
1 parent dc48dc9 commit 8469157
Show file tree
Hide file tree
Showing 5 changed files with 96 additions and 72 deletions.
1 change: 1 addition & 0 deletions doc/source/whatsnew/v1.4.2.rst
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@ Bug fixes
- Fixed "longtable" formatting in :meth:`.Styler.to_latex` when ``column_format`` is given in extended format (:issue:`46037`)
- Fixed incorrect rendering in :meth:`.Styler.format` with ``hyperlinks="html"`` when the url contains a colon or other special characters (:issue:`46389`)
- Improved error message in :class:`~pandas.core.window.Rolling` when ``window`` is a frequency and ``NaT`` is in the rolling axis (:issue:`46087`)
- Fixed :meth:`Groupby.rolling` with a frequency window that would raise a ``ValueError`` even if the datetimes within each group were monotonic (:issue:`46061`)

.. ---------------------------------------------------------------------------
Expand Down
18 changes: 18 additions & 0 deletions pandas/core/window/rolling.py
Original file line number Diff line number Diff line change
Expand Up @@ -2630,3 +2630,21 @@ def _get_window_indexer(self) -> GroupbyIndexer:
indexer_kwargs=indexer_kwargs,
)
return window_indexer

def _validate_datetimelike_monotonic(self):
"""
Validate that each group in self._on is monotonic
"""
# GH 46061
if self._on.hasnans:
self._raise_monotonic_error("values must not have NaT")
for group_indices in self._grouper.indices.values():
group_on = self._on.take(group_indices)
if not (
group_on.is_monotonic_increasing or group_on.is_monotonic_decreasing
):
on = "index" if self.on is None else self.on
raise ValueError(
f"Each group within {on} must be monotonic. "
f"Sort the values in {on} first."
)
77 changes: 77 additions & 0 deletions pandas/tests/window/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -895,6 +895,83 @@ def test_nan_and_zero_endpoints(self):
)
tm.assert_series_equal(result, expected)

def test_groupby_rolling_non_monotonic(self):
# GH 43909

shuffled = [3, 0, 1, 2]
sec = 1_000
df = DataFrame(
[{"t": Timestamp(2 * x * sec), "x": x + 1, "c": 42} for x in shuffled]
)
with pytest.raises(ValueError, match=r".* must be monotonic"):
df.groupby("c").rolling(on="t", window="3s")

def test_groupby_monotonic(self):

# GH 15130
# we don't need to validate monotonicity when grouping

# GH 43909 we should raise an error here to match
# behaviour of non-groupby rolling.

data = [
["David", "1/1/2015", 100],
["David", "1/5/2015", 500],
["David", "5/30/2015", 50],
["David", "7/25/2015", 50],
["Ryan", "1/4/2014", 100],
["Ryan", "1/19/2015", 500],
["Ryan", "3/31/2016", 50],
["Joe", "7/1/2015", 100],
["Joe", "9/9/2015", 500],
["Joe", "10/15/2015", 50],
]

df = DataFrame(data=data, columns=["name", "date", "amount"])
df["date"] = to_datetime(df["date"])
df = df.sort_values("date")

expected = (
df.set_index("date")
.groupby("name")
.apply(lambda x: x.rolling("180D")["amount"].sum())
)
result = df.groupby("name").rolling("180D", on="date")["amount"].sum()
tm.assert_series_equal(result, expected)

def test_datelike_on_monotonic_within_each_group(self):
# GH 13966 (similar to #15130, closed by #15175)

# superseded by 43909
# GH 46061: OK if the on is monotonic relative to each each group

dates = date_range(start="2016-01-01 09:30:00", periods=20, freq="s")
df = DataFrame(
{
"A": [1] * 20 + [2] * 12 + [3] * 8,
"B": np.concatenate((dates, dates)),
"C": np.arange(40),
}
)

expected = (
df.set_index("B").groupby("A").apply(lambda x: x.rolling("4s")["C"].mean())
)
result = df.groupby("A").rolling("4s", on="B").C.mean()
tm.assert_series_equal(result, expected)

def test_datelike_on_not_monotonic_within_each_group(self):
# GH 46061
df = DataFrame(
{
"A": [1] * 3 + [2] * 3,
"B": [Timestamp(year, 1, 1) for year in [2020, 2021, 2019]] * 2,
"C": range(6),
}
)
with pytest.raises(ValueError, match="Each group within B must be monotonic."):
df.groupby("A").rolling("365D", on="B")


class TestExpanding:
def setup_method(self):
Expand Down
12 changes: 0 additions & 12 deletions pandas/tests/window/test_rolling.py
Original file line number Diff line number Diff line change
Expand Up @@ -1419,18 +1419,6 @@ def test_groupby_rolling_nan_included():
tm.assert_frame_equal(result, expected)


def test_groupby_rolling_non_monotonic():
# GH 43909

shuffled = [3, 0, 1, 2]
sec = 1_000
df = DataFrame(
[{"t": Timestamp(2 * x * sec), "x": x + 1, "c": 42} for x in shuffled]
)
with pytest.raises(ValueError, match=r".* must be monotonic"):
df.groupby("c").rolling(on="t", window="3s")


@pytest.mark.parametrize("method", ["skew", "kurt"])
def test_rolling_skew_kurt_numerical_stability(method):
# GH#6929
Expand Down
60 changes: 0 additions & 60 deletions pandas/tests/window/test_timeseries_window.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,6 @@
Series,
Timestamp,
date_range,
to_datetime,
)
import pandas._testing as tm

Expand Down Expand Up @@ -644,65 +643,6 @@ def agg_by_day(x):

tm.assert_frame_equal(result, expected)

def test_groupby_monotonic(self):

# GH 15130
# we don't need to validate monotonicity when grouping

# GH 43909 we should raise an error here to match
# behaviour of non-groupby rolling.

data = [
["David", "1/1/2015", 100],
["David", "1/5/2015", 500],
["David", "5/30/2015", 50],
["David", "7/25/2015", 50],
["Ryan", "1/4/2014", 100],
["Ryan", "1/19/2015", 500],
["Ryan", "3/31/2016", 50],
["Joe", "7/1/2015", 100],
["Joe", "9/9/2015", 500],
["Joe", "10/15/2015", 50],
]

df = DataFrame(data=data, columns=["name", "date", "amount"])
df["date"] = to_datetime(df["date"])
df = df.sort_values("date")

expected = (
df.set_index("date")
.groupby("name")
.apply(lambda x: x.rolling("180D")["amount"].sum())
)
result = df.groupby("name").rolling("180D", on="date")["amount"].sum()
tm.assert_series_equal(result, expected)

def test_non_monotonic_raises(self):
# GH 13966 (similar to #15130, closed by #15175)

# superseded by 43909

dates = date_range(start="2016-01-01 09:30:00", periods=20, freq="s")
df = DataFrame(
{
"A": [1] * 20 + [2] * 12 + [3] * 8,
"B": np.concatenate((dates, dates)),
"C": np.arange(40),
}
)

expected = (
df.set_index("B").groupby("A").apply(lambda x: x.rolling("4s")["C"].mean())
)
with pytest.raises(ValueError, match=r".* must be monotonic"):
df.groupby("A").rolling(
"4s", on="B"
).C.mean() # should raise for non-monotonic t series

df2 = df.sort_values("B")
result = df2.groupby("A").rolling("4s", on="B").C.mean()
tm.assert_series_equal(result, expected)

def test_rolling_cov_offset(self):
# GH16058

Expand Down

0 comments on commit 8469157

Please sign in to comment.