Skip to content

An official implementation of MobileStyleGAN in PyTorch

License

Apache-2.0, Unknown licenses found

Licenses found

Apache-2.0
LICENSE
Unknown
LICENSE-NVIDIA
Notifications You must be signed in to change notification settings

sier-git/MobileStyleGAN.pytorch

 
 

Repository files navigation

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis

Official PyTorch Implementation

The accompanying videos can be found on YouTube. For more details, please refer to the paper.

Requirements

  • Python 3.8+
  • 1–8 high-end NVIDIA GPUs with at least 12 GB of memory. We have done all testing and development using DL Workstation with 4x2080Ti

Training

pip install -r requirements.txt
python train.py --cfg configs/mobile_stylegan_ffhq.json --gpus <n_gpus>

Generate images using MobileStyleGAN

python generate.py --cfg configs/mobile_stylegan_ffhq.json --device cuda --ckpt <path_to_ckpt> --output-path <path_to_store_imgs> --batch-size <batch_size> --n-batches <n_batches>

Evaluate FID score

To evaluate the FID score we use a modified version of pytorch-fid library:

python evaluate_fid.py <path_to_ref_dataset> <path_to_generated_imgs>

Demo

Run demo visualization using MobileStyleGAN:

python demo.py --cfg configs/mobile_stylegan_ffhq.json --ckpt <path_to_ckpt>

Run visual comparison using StyleGAN2 vs. MobileStyleGAN:

python compare.py --cfg configs/mobile_stylegan_ffhq.json --ckpt <path_to_ckpt>

Convert to ONNX

python train.py --cfg configs/mobile_stylegan_ffhq.json --ckpt <path_to_ckpt> --to-onnx <onnx_prefix_name>

Deployment using OpenVINO

We provide external library random_face as an example of deploying our model at the edge devices using the OpenVINO framework.

Pretrained models

Name FID
mobilestylegan_ffhq.ckpt 12.38

(*) Our framework supports automatic download pretrained models, just use --ckpt <pretrined_model_name>.

Legacy license

Code Source License
Custom CUDA kernels https://github.com/NVlabs/stylegan2 Nvidia License
StyleGAN2 blocks https://github.com/rosinality/stylegan2-pytorch MIT

Acknowledgements

We want to thank the people whose works contributed to our project::

  • Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, Timo Aila for research related to style based generative models.
  • Kim Seonghyeon for implementation of StyleGAN2 in PyTorch.
  • Fergal Cotter for implementation of Discrete Wavelet Transforms and Inverse Discrete Wavelet Transforms in PyTorch.

Citation

If you are using the results and code of this work, please cite it as:

@misc{belousov2021mobilestylegan,
      title={MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis},
      author={Sergei Belousov},
      year={2021},
      eprint={2104.04767},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

About

An official implementation of MobileStyleGAN in PyTorch

Resources

License

Apache-2.0, Unknown licenses found

Licenses found

Apache-2.0
LICENSE
Unknown
LICENSE-NVIDIA

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 83.8%
  • Cuda 14.4%
  • C++ 1.8%