forked from open-mmlab/mmpose
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Doc] Refine algorithm readme with model performance table (open-mmla…
…b#1627) Co-authored-by: Qikai Li <[email protected]>
- Loading branch information
Showing
12 changed files
with
168 additions
and
26 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,109 @@ | ||
# Top-down heatmap-based pose estimation | ||
|
||
Top-down methods divide the task into two stages: object detection and pose estimation. | ||
Top-down methods divide the task into two stages: object detection, followed by single-object pose estimation given object bounding boxes. Instead of estimating keypoint coordinates directly, the pose estimator will produce heatmaps which represent the likelihood of being a keypoint, following the paradigm introduced in [Simple Baselines for Human Pose Estimation and Tracking](http://openaccess.thecvf.com/content_ECCV_2018/html/Bin_Xiao_Simple_Baselines_for_ECCV_2018_paper.html). | ||
|
||
They perform object detection first, followed by single-object pose estimation given object bounding boxes. | ||
Instead of estimating keypoint coordinates directly, the pose estimator will produce heatmaps which represent the | ||
likelihood of being a keypoint. | ||
<div align=center> | ||
<img src="https://user-images.githubusercontent.com/15977946/146522977-5f355832-e9c1-442f-a34f-9d24fb0aefa8.png" height=400> | ||
</div> | ||
|
||
## Results and Models | ||
|
||
### COCO Dataset | ||
|
||
Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset | ||
|
||
| Model | Input Size | AP | AR | Details and Download | | ||
| :-------------: | :--------: | :---: | :---: | :-------------------------------------------------: | | ||
| HRNet-w48+UDP | 256x192 | 0.768 | 0.817 | [hrnet_udp_coco.md](./coco/hrnet_udp_coco.md) | | ||
| MSPN 4-stg | 256x192 | 0.765 | 0.826 | [mspn_coco.md](./coco/mspn_coco.md) | | ||
| HRNet-w48+Dark | 256x192 | 0.764 | 0.814 | [hrnet_dark_coco.md](./coco/hrnet_dark_coco.md) | | ||
| HRNet-w48 | 256x192 | 0.756 | 0.809 | [hrnet_coco.md](./coco/hrnet_coco.md) | | ||
| HRFormer-B | 256x192 | 0.754 | 0.807 | [hrformer_coco.md](./coco/hrformer_coco.md) | | ||
| RSN-50-3x | 256x192 | 0.749 | 0.812 | [rsn_coco.md](./coco/rsn_coco.md) | | ||
| HRNet-w32 | 256x192 | 0.749 | 0.804 | [hrnet_coco.md](./coco/hrnet_coco.md) | | ||
| Swin-L | 256x192 | 0.743 | 0.798 | [swin_coco.md](./coco/swin_coco.md) | | ||
| HRFormer-S | 256x192 | 0.738 | 0.793 | [hrformer_coco.md](./coco/hrformer_coco.md) | | ||
| Swin-B | 256x192 | 0.737 | 0.794 | [swin_coco.md](./coco/swin_coco.md) | | ||
| SEResNet-101 | 256x192 | 0.734 | 0.790 | [seresnet_coco.md](./coco/seresnet_coco.md) | | ||
| SCNet-101 | 256x192 | 0.733 | 0.789 | [scnet_coco.md](./coco/scnet_coco.md) | | ||
| ResNet-101+Dark | 256x192 | 0.732 | 0.786 | [resnet_dark_coco.md](./coco/resnet_dark_coco.md) | | ||
| ResNetV1d-101 | 256x192 | 0.731 | 0.786 | [resnetv1d_coco.md](./coco/resnetv1d_coco.md) | | ||
| SEResNet-50 | 256x192 | 0.729 | 0.784 | [seresnet_coco.md](./coco/seresnet_coco.md) | | ||
| SCNet-50 | 256x192 | 0.728 | 0.784 | [scnet_coco.md](./coco/scnet_coco.md) | | ||
| ResNet-101 | 256x192 | 0.726 | 0.781 | [resnet_coco.md](./coco/resnet_coco.md) | | ||
| ResNeXt-101 | 256x192 | 0.726 | 0.781 | [resnext_coco.md](./coco/resnext_coco.md) | | ||
| RSN-50 | 256x192 | 0.726 | 0.781 | [rsn_coco.md](./coco/rsn_coco.md) | | ||
| HourglassNet | 256x256 | 0.726 | 0.780 | [hourglass_coco.md](./coco/hourglass_coco.md) | | ||
| ResNeSt-101 | 256x192 | 0.725 | 0.781 | [resnest_coco.md](./coco/resnest_coco.md) | | ||
| Swin-T | 256x192 | 0.724 | 0.782 | [swin_coco.md](./coco/swin_coco.md) | | ||
| MSPN 1-stg | 256x192 | 0.723 | 0.788 | [mspn_coco.md](./coco/mspn_coco.md) | | ||
| ResNetV1d-50 | 256x192 | 0.722 | 0.777 | [resnetv1d_coco.md](./coco/resnetv1d_coco.md) | | ||
| ResNeSt-50 | 256x192 | 0.720 | 0.775 | [resnest_coco.md](./coco/resnest_coco.md) | | ||
| ResNet-50 | 256x192 | 0.718 | 0.773 | [resnet_coco.md](./coco/resnet_coco.md) | | ||
| ResNeXt-50 | 256x192 | 0.715 | 0.771 | [resnext_coco.md](./coco/resnext_coco.md) | | ||
| PVT-S | 256x192 | 0.714 | 0.773 | [pvt_coco.md](./coco/pvt_coco.md) | | ||
| LiteHRNet-30 | 256x192 | 0.676 | 0.736 | [litehrnet_coco.md](./coco/litehrnet_coco.md) | | ||
| MobileNet-v2 | 256x192 | 0.647 | 0.708 | [mobilenetv2_coco.md](./coco/mobilenetv2_coco.md) | | ||
| LiteHRNet-18 | 256x192 | 0.642 | 0.705 | [litehrnet_coco.md](./coco/litehrnet_coco.md) | | ||
| CPM | 256x192 | 0.623 | 0.685 | [cpm_coco.md](./coco/cpm_coco.md) | | ||
| ShuffleNet-v2 | 256x192 | 0.598 | 0.664 | [shufflenetv2_coco.md](./coco/shufflenetv2_coco.md) | | ||
| ShuffleNet-v1 | 256x192 | 0.586 | 0.651 | [shufflenetv1_coco.md](./coco/shufflenetv1_coco.md) | | ||
| AlexNet | 256x192 | 0.448 | 0.521 | [alexnet_coco.md](./coco/alexnet_coco.md) | | ||
|
||
### MPII Dataset | ||
|
||
| Model | Input Size | [email protected] | [email protected] | Details and Download | | ||
| :------------: | :--------: | :------: | :------: | :-------------------------------------------------: | | ||
| HRNet-w48+Dark | 256x256 | 0.905 | 0.360 | [hrnet_dark_mpii.md](./mpii/hrnet_dark_mpii.md) | | ||
| HRNet-w48 | 256x256 | 0.901 | 0.337 | [hrnet_mpii.md](./mpii/hrnet_mpii.md) | | ||
| HRNet-w32 | 256x256 | 0.900 | 0.334 | [hrnet_mpii.md](./mpii/hrnet_mpii.md) | | ||
| HourglassNet | 256x256 | 0.889 | 0.317 | [hourglass_mpii.md](./mpii/hourglass_mpii.md) | | ||
| ResNet-152 | 256x256 | 0.889 | 0.303 | [resnet_mpii.md](./mpii/resnet_mpii.md) | | ||
| ResNetV1d-152 | 256x256 | 0.888 | 0.300 | [resnetv1d_mpii.md](./mpii/resnetv1d_mpii.md) | | ||
| SCNet-50 | 256x256 | 0.888 | 0.290 | [scnet_mpii.md](./mpii/scnet_mpii.md) | | ||
| ResNeXt-152 | 256x256 | 0.887 | 0.294 | [resnext_mpii.md](./mpii/resnext_mpii.md) | | ||
| SEResNet-50 | 256x256 | 0.884 | 0.292 | [seresnet_mpii.md](./mpii/seresnet_mpii.md) | | ||
| ResNet-50 | 256x256 | 0.882 | 0.286 | [resnet_mpii.md](./mpii/resnet_mpii.md) | | ||
| ResNetV1d-50 | 256x256 | 0.881 | 0.290 | [resnetv1d_mpii.md](./mpii/resnetv1d_mpii.md) | | ||
| CPM | 368x368\* | 0.876 | 0.285 | [cpm_mpii.md](./mpii/cpm_mpii.md) | | ||
| LiteHRNet-30 | 256x256 | 0.869 | 0.271 | [litehrnet_mpii.md](./mpii/litehrnet_mpii.md) | | ||
| LiteHRNet-18 | 256x256 | 0.859 | 0.260 | [litehrnet_mpii.md](./mpii/litehrnet_mpii.md) | | ||
| MobileNet-v2 | 256x256 | 0.854 | 0.234 | [mobilenetv2_mpii.md](./mpii/mobilenetv2_mpii.md) | | ||
| ShuffleNet-v2 | 256x256 | 0.828 | 0.205 | [shufflenetv2_mpii.md](./mpii/shufflenetv2_mpii.md) | | ||
| ShuffleNet-v1 | 256x256 | 0.824 | 0.195 | [shufflenetv1_mpii.md](./mpii/shufflenetv1_mpii.md) | | ||
|
||
### CrowdPose Dataset | ||
|
||
Results on CrowdPose test with [YOLOv3](https://github.com/eriklindernoren/PyTorch-YOLOv3) human detector | ||
|
||
| Model | Input Size | AP | AR | Details and Download | | ||
| :--------: | :--------: | :---: | :---: | :----------------------------------------------------: | | ||
| HRNet-w32 | 256x192 | 0.675 | 0.816 | [hrnet_crowdpose.md](./crowdpose/hrnet_crowdpose.md) | | ||
| ResNet-101 | 256x192 | 0.647 | 0.800 | [resnet_crowdpose.md](./crowdpose/resnet_crowdpose.md) | | ||
| HRNet-w32 | 256x192 | 0.637 | 0.785 | [resnet_crowdpose.md](./crowdpose/resnet_crowdpose.md) | | ||
|
||
### AIC Dataset | ||
|
||
Results on AIC val set with ground-truth bounding boxes. | ||
|
||
| Model | Input Size | AP | AR | Details and Download | | ||
| :--------: | :--------: | :---: | :---: | :----------------------------------: | | ||
| HRNet-w32 | 256x192 | 0.323 | 0.366 | [hrnet_aic.md](./aic/hrnet_aic.md) | | ||
| ResNet-101 | 256x192 | 0.294 | 0.337 | [resnet_aic.md](./aic/resnet_aic.md) | | ||
|
||
### JHMDB Dataset | ||
|
||
| Model | Input Size | PCK(norm. by person size) | PCK (norm. by torso size) | Details and Download | | ||
| :-------: | :--------: | :-----------------------: | :-----------------------: | :----------------------------------------: | | ||
| ResNet-50 | 256x256 | 96.0 | 80.1 | [resnet_jhmdb.md](./jhmdb/resnet_jhmdb.md) | | ||
| CPM | 368x368 | 89.8 | 65.7 | [cpm_jhmdb.md](./jhmdb/cpm_jhmdb.md) | | ||
|
||
### PoseTrack2018 Dataset | ||
|
||
Results on PoseTrack2018 val with ground-truth bounding boxes. | ||
|
||
| Model | Input Size | AP | Details and Download | | ||
| :-------: | :--------: | :--: | :----------------------------------------------------------: | | ||
| HRNet-w48 | 256x192 | 84.6 | [hrnet_posetrack18.md](./posetrack18/hrnet_posetrack18.md) | | ||
| HRNet-w32 | 256x192 | 83.4 | [hrnet_posetrack18.md](./posetrack18/hrnet_posetrack18.md) | | ||
| ResNet-50 | 256x192 | 81.2 | [resnet_posetrack18.md](./posetrack18/resnet_posetrack18.md) | |
Oops, something went wrong.