Skip to content

Commit

Permalink
[Doc] Refine algorithm readme with model performance table (open-mmla…
Browse files Browse the repository at this point in the history
…b#1627)

Co-authored-by: Qikai Li <[email protected]>
  • Loading branch information
ly015 and liqikai9 committed Oct 14, 2022
1 parent 7e1d52a commit 8f58b7b
Show file tree
Hide file tree
Showing 12 changed files with 168 additions and 26 deletions.
1 change: 1 addition & 0 deletions .circleci/test.yml
Original file line number Diff line number Diff line change
Expand Up @@ -108,6 +108,7 @@ jobs:
name: Install mmpose dependencies
command: |
docker exec mmpose apt install git -y
docker exec mmpose pip install -U numpy
docker exec mmpose pip install -e /mmengine
docker exec mmpose pip install -U openmim
docker exec mmpose mim install 'mmcv >= 2.0.0rc1'
Expand Down
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@
[![Documentation](https://readthedocs.org/projects/mmpose/badge/?version=latest)](https://mmpose.readthedocs.io/en/1.x/?badge=latest)
[![actions](https://github.com/open-mmlab/mmpose/workflows/build/badge.svg)](https://github.com/open-mmlab/mmpose/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmpose/branch/1.x/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmpose)
[![PyPI](https://badge.fury.io/py/mmpose.svg)](https://pypi.org/project/mmpose/)
[![PyPI](https://img.shields.io/pypi/v/mmpose)](https://pypi.org/project/mmpose/)
[![LICENSE](https://img.shields.io/github/license/open-mmlab/mmpose.svg)](https://github.com/open-mmlab/mmpose/blob/master/LICENSE)
[![Average time to resolve an issue](https://isitmaintained.com/badge/resolution/open-mmlab/mmpose.svg)](https://github.com/open-mmlab/mmpose/issues)
[![Percentage of issues still open](https://isitmaintained.com/badge/open/open-mmlab/mmpose.svg)](https://github.com/open-mmlab/mmpose/issues)
Expand Down
2 changes: 1 addition & 1 deletion README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@
[![Documentation](https://readthedocs.org/projects/mmpose/badge/?version=latest)](https://mmpose.readthedocs.io/en/1.x/?badge=latest)
[![actions](https://github.com/open-mmlab/mmpose/workflows/build/badge.svg)](https://github.com/open-mmlab/mmpose/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmpose/branch/1.x/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmpose)
[![PyPI](https://badge.fury.io/py/mmpose.svg)](https://pypi.org/project/mmpose/)
[![PyPI](https://img.shields.io/pypi/v/mmpose)](https://pypi.org/project/mmpose/)
[![LICENSE](https://img.shields.io/github/license/open-mmlab/mmpose.svg)](https://github.com/open-mmlab/mmpose/blob/master/LICENSE)
[![Average time to resolve an issue](https://isitmaintained.com/badge/resolution/open-mmlab/mmpose.svg)](https://github.com/open-mmlab/mmpose/issues)
[![Percentage of issues still open](https://isitmaintained.com/badge/open/open-mmlab/mmpose.svg)](https://github.com/open-mmlab/mmpose/issues)
Expand Down
2 changes: 2 additions & 0 deletions configs/animal_2d_keypoint/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,8 @@ Please follow [DATA Preparation](/docs/en/dataset_zoo/2d_animal_keypoint.md) to

Please follow [DEMO](/demo/docs/2d_animal_demo.md) to generate fancy demos.

<img src="https://user-images.githubusercontent.com/26127467/187655602-907db86e-710b-447a-8ec9-5b623d43d160.gif" height="500px" alt><br>

<img src="https://user-images.githubusercontent.com/11788150/114201893-4446ec00-9989-11eb-808b-5718c47c7b23.gif" height="140px" alt><br>

<img src="https://user-images.githubusercontent.com/11788150/114205282-b5d46980-998c-11eb-9d6b-85ba47f81252.gif" height="140px" alt><br>
Expand Down
4 changes: 3 additions & 1 deletion configs/body_2d_keypoint/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,4 +16,6 @@ Please follow [DATA Preparation](/docs/en/dataset_zoo/2d_body_keypoint.md) to pr

Please follow [Demo](/demo/docs/2d_human_pose_demo.md#2d-human-pose-demo) to run demos.

<img src="/demo/resources/demo_coco.gif" width="600px" alt>
<div align=center>
<img src="https://user-images.githubusercontent.com/87690686/187824368-1f1631c3-52bf-4b45-bf9a-a70cd6551e1a.jpg" height="500px" alt><br>
</div>
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,10 @@
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True),
backbone=dict(type='ResNet', depth=50),
backbone=dict(
type='ResNet',
depth=50,
),
head=dict(
type='DSNTHead',
in_channels=2048,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,8 @@
type='IntegralRegressionLabel',
input_size=(256, 256),
heatmap_size=(64, 64),
sigma=2)
sigma=2.0,
normalize=True)

# model settings
model = dict(
Expand All @@ -41,7 +42,10 @@
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True),
backbone=dict(type='ResNet', depth=50),
backbone=dict(
type='ResNet',
depth=50,
),
head=dict(
type='DSNTHead',
in_channels=2048,
Expand Down
110 changes: 106 additions & 4 deletions configs/body_2d_keypoint/topdown_heatmap/README.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,109 @@
# Top-down heatmap-based pose estimation

Top-down methods divide the task into two stages: object detection and pose estimation.
Top-down methods divide the task into two stages: object detection, followed by single-object pose estimation given object bounding boxes. Instead of estimating keypoint coordinates directly, the pose estimator will produce heatmaps which represent the likelihood of being a keypoint, following the paradigm introduced in [Simple Baselines for Human Pose Estimation and Tracking](http://openaccess.thecvf.com/content_ECCV_2018/html/Bin_Xiao_Simple_Baselines_for_ECCV_2018_paper.html).

They perform object detection first, followed by single-object pose estimation given object bounding boxes.
Instead of estimating keypoint coordinates directly, the pose estimator will produce heatmaps which represent the
likelihood of being a keypoint.
<div align=center>
<img src="https://user-images.githubusercontent.com/15977946/146522977-5f355832-e9c1-442f-a34f-9d24fb0aefa8.png" height=400>
</div>

## Results and Models

### COCO Dataset

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

| Model | Input Size | AP | AR | Details and Download |
| :-------------: | :--------: | :---: | :---: | :-------------------------------------------------: |
| HRNet-w48+UDP | 256x192 | 0.768 | 0.817 | [hrnet_udp_coco.md](./coco/hrnet_udp_coco.md) |
| MSPN 4-stg | 256x192 | 0.765 | 0.826 | [mspn_coco.md](./coco/mspn_coco.md) |
| HRNet-w48+Dark | 256x192 | 0.764 | 0.814 | [hrnet_dark_coco.md](./coco/hrnet_dark_coco.md) |
| HRNet-w48 | 256x192 | 0.756 | 0.809 | [hrnet_coco.md](./coco/hrnet_coco.md) |
| HRFormer-B | 256x192 | 0.754 | 0.807 | [hrformer_coco.md](./coco/hrformer_coco.md) |
| RSN-50-3x | 256x192 | 0.749 | 0.812 | [rsn_coco.md](./coco/rsn_coco.md) |
| HRNet-w32 | 256x192 | 0.749 | 0.804 | [hrnet_coco.md](./coco/hrnet_coco.md) |
| Swin-L | 256x192 | 0.743 | 0.798 | [swin_coco.md](./coco/swin_coco.md) |
| HRFormer-S | 256x192 | 0.738 | 0.793 | [hrformer_coco.md](./coco/hrformer_coco.md) |
| Swin-B | 256x192 | 0.737 | 0.794 | [swin_coco.md](./coco/swin_coco.md) |
| SEResNet-101 | 256x192 | 0.734 | 0.790 | [seresnet_coco.md](./coco/seresnet_coco.md) |
| SCNet-101 | 256x192 | 0.733 | 0.789 | [scnet_coco.md](./coco/scnet_coco.md) |
| ResNet-101+Dark | 256x192 | 0.732 | 0.786 | [resnet_dark_coco.md](./coco/resnet_dark_coco.md) |
| ResNetV1d-101 | 256x192 | 0.731 | 0.786 | [resnetv1d_coco.md](./coco/resnetv1d_coco.md) |
| SEResNet-50 | 256x192 | 0.729 | 0.784 | [seresnet_coco.md](./coco/seresnet_coco.md) |
| SCNet-50 | 256x192 | 0.728 | 0.784 | [scnet_coco.md](./coco/scnet_coco.md) |
| ResNet-101 | 256x192 | 0.726 | 0.781 | [resnet_coco.md](./coco/resnet_coco.md) |
| ResNeXt-101 | 256x192 | 0.726 | 0.781 | [resnext_coco.md](./coco/resnext_coco.md) |
| RSN-50 | 256x192 | 0.726 | 0.781 | [rsn_coco.md](./coco/rsn_coco.md) |
| HourglassNet | 256x256 | 0.726 | 0.780 | [hourglass_coco.md](./coco/hourglass_coco.md) |
| ResNeSt-101 | 256x192 | 0.725 | 0.781 | [resnest_coco.md](./coco/resnest_coco.md) |
| Swin-T | 256x192 | 0.724 | 0.782 | [swin_coco.md](./coco/swin_coco.md) |
| MSPN 1-stg | 256x192 | 0.723 | 0.788 | [mspn_coco.md](./coco/mspn_coco.md) |
| ResNetV1d-50 | 256x192 | 0.722 | 0.777 | [resnetv1d_coco.md](./coco/resnetv1d_coco.md) |
| ResNeSt-50 | 256x192 | 0.720 | 0.775 | [resnest_coco.md](./coco/resnest_coco.md) |
| ResNet-50 | 256x192 | 0.718 | 0.773 | [resnet_coco.md](./coco/resnet_coco.md) |
| ResNeXt-50 | 256x192 | 0.715 | 0.771 | [resnext_coco.md](./coco/resnext_coco.md) |
| PVT-S | 256x192 | 0.714 | 0.773 | [pvt_coco.md](./coco/pvt_coco.md) |
| LiteHRNet-30 | 256x192 | 0.676 | 0.736 | [litehrnet_coco.md](./coco/litehrnet_coco.md) |
| MobileNet-v2 | 256x192 | 0.647 | 0.708 | [mobilenetv2_coco.md](./coco/mobilenetv2_coco.md) |
| LiteHRNet-18 | 256x192 | 0.642 | 0.705 | [litehrnet_coco.md](./coco/litehrnet_coco.md) |
| CPM | 256x192 | 0.623 | 0.685 | [cpm_coco.md](./coco/cpm_coco.md) |
| ShuffleNet-v2 | 256x192 | 0.598 | 0.664 | [shufflenetv2_coco.md](./coco/shufflenetv2_coco.md) |
| ShuffleNet-v1 | 256x192 | 0.586 | 0.651 | [shufflenetv1_coco.md](./coco/shufflenetv1_coco.md) |
| AlexNet | 256x192 | 0.448 | 0.521 | [alexnet_coco.md](./coco/alexnet_coco.md) |

### MPII Dataset

| Model | Input Size | [email protected] | [email protected] | Details and Download |
| :------------: | :--------: | :------: | :------: | :-------------------------------------------------: |
| HRNet-w48+Dark | 256x256 | 0.905 | 0.360 | [hrnet_dark_mpii.md](./mpii/hrnet_dark_mpii.md) |
| HRNet-w48 | 256x256 | 0.901 | 0.337 | [hrnet_mpii.md](./mpii/hrnet_mpii.md) |
| HRNet-w32 | 256x256 | 0.900 | 0.334 | [hrnet_mpii.md](./mpii/hrnet_mpii.md) |
| HourglassNet | 256x256 | 0.889 | 0.317 | [hourglass_mpii.md](./mpii/hourglass_mpii.md) |
| ResNet-152 | 256x256 | 0.889 | 0.303 | [resnet_mpii.md](./mpii/resnet_mpii.md) |
| ResNetV1d-152 | 256x256 | 0.888 | 0.300 | [resnetv1d_mpii.md](./mpii/resnetv1d_mpii.md) |
| SCNet-50 | 256x256 | 0.888 | 0.290 | [scnet_mpii.md](./mpii/scnet_mpii.md) |
| ResNeXt-152 | 256x256 | 0.887 | 0.294 | [resnext_mpii.md](./mpii/resnext_mpii.md) |
| SEResNet-50 | 256x256 | 0.884 | 0.292 | [seresnet_mpii.md](./mpii/seresnet_mpii.md) |
| ResNet-50 | 256x256 | 0.882 | 0.286 | [resnet_mpii.md](./mpii/resnet_mpii.md) |
| ResNetV1d-50 | 256x256 | 0.881 | 0.290 | [resnetv1d_mpii.md](./mpii/resnetv1d_mpii.md) |
| CPM | 368x368\* | 0.876 | 0.285 | [cpm_mpii.md](./mpii/cpm_mpii.md) |
| LiteHRNet-30 | 256x256 | 0.869 | 0.271 | [litehrnet_mpii.md](./mpii/litehrnet_mpii.md) |
| LiteHRNet-18 | 256x256 | 0.859 | 0.260 | [litehrnet_mpii.md](./mpii/litehrnet_mpii.md) |
| MobileNet-v2 | 256x256 | 0.854 | 0.234 | [mobilenetv2_mpii.md](./mpii/mobilenetv2_mpii.md) |
| ShuffleNet-v2 | 256x256 | 0.828 | 0.205 | [shufflenetv2_mpii.md](./mpii/shufflenetv2_mpii.md) |
| ShuffleNet-v1 | 256x256 | 0.824 | 0.195 | [shufflenetv1_mpii.md](./mpii/shufflenetv1_mpii.md) |

### CrowdPose Dataset

Results on CrowdPose test with [YOLOv3](https://github.com/eriklindernoren/PyTorch-YOLOv3) human detector

| Model | Input Size | AP | AR | Details and Download |
| :--------: | :--------: | :---: | :---: | :----------------------------------------------------: |
| HRNet-w32 | 256x192 | 0.675 | 0.816 | [hrnet_crowdpose.md](./crowdpose/hrnet_crowdpose.md) |
| ResNet-101 | 256x192 | 0.647 | 0.800 | [resnet_crowdpose.md](./crowdpose/resnet_crowdpose.md) |
| HRNet-w32 | 256x192 | 0.637 | 0.785 | [resnet_crowdpose.md](./crowdpose/resnet_crowdpose.md) |

### AIC Dataset

Results on AIC val set with ground-truth bounding boxes.

| Model | Input Size | AP | AR | Details and Download |
| :--------: | :--------: | :---: | :---: | :----------------------------------: |
| HRNet-w32 | 256x192 | 0.323 | 0.366 | [hrnet_aic.md](./aic/hrnet_aic.md) |
| ResNet-101 | 256x192 | 0.294 | 0.337 | [resnet_aic.md](./aic/resnet_aic.md) |

### JHMDB Dataset

| Model | Input Size | PCK(norm. by person size) | PCK (norm. by torso size) | Details and Download |
| :-------: | :--------: | :-----------------------: | :-----------------------: | :----------------------------------------: |
| ResNet-50 | 256x256 | 96.0 | 80.1 | [resnet_jhmdb.md](./jhmdb/resnet_jhmdb.md) |
| CPM | 368x368 | 89.8 | 65.7 | [cpm_jhmdb.md](./jhmdb/cpm_jhmdb.md) |

### PoseTrack2018 Dataset

Results on PoseTrack2018 val with ground-truth bounding boxes.

| Model | Input Size | AP | Details and Download |
| :-------: | :--------: | :--: | :----------------------------------------------------------: |
| HRNet-w48 | 256x192 | 84.6 | [hrnet_posetrack18.md](./posetrack18/hrnet_posetrack18.md) |
| HRNet-w32 | 256x192 | 83.4 | [hrnet_posetrack18.md](./posetrack18/hrnet_posetrack18.md) |
| ResNet-50 | 256x192 | 81.2 | [resnet_posetrack18.md](./posetrack18/resnet_posetrack18.md) |
Loading

0 comments on commit 8f58b7b

Please sign in to comment.