Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ru] cs-229-deep-learning, cs-229-supervised-learning #21

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 11 additions & 11 deletions ru/cheatsheet-supervised-learning.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@

**2. Introduction to Supervised Learning**

⟶
⟶ Введение в обучение в подкреплением
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Supervised learning in Russian is "Обучение с учителем".


<br>

Expand All @@ -18,13 +18,13 @@

**4. Type of prediction ― The different types of predictive models are summed up in the table below:**

&#10230;
&#10230; Тип предсказания - Различные типы предсказывающих моделей перечислены в таблице ниже:

<br>

**5. [Regression, Classifier, Outcome, Examples]**

&#10230;
&#10230; [Регрессия, классификатор, вывод, примеры]

<br>

Expand All @@ -36,7 +36,7 @@

**7. Type of model ― The different models are summed up in the table below:**

&#10230;
&#10230; Тип модели - Различные типы моделей перечислены в таблице ниже:

<br>

Expand All @@ -54,13 +54,13 @@

**10. Notations and general concepts**

&#10230;
&#10230; 10. Обозначения и основные понятия

<br>

**11. Hypothesis ― The hypothesis is noted hθ and is the model that we choose. For a given input data x(i) the model prediction output is hθ(x(i)).**

&#10230;
&#10230; Гипотеза - Гипотеза, обозначаемая как hθ, является выбранной нами моделью. Для входных данных x(i) предсказания модели будут обозначаться hθ(x(i)).

<br>

Expand Down Expand Up @@ -120,19 +120,19 @@

**21. Linear models**

&#10230;
&#10230; Линейные модели

<br>

**22. Linear regression**

&#10230;
&#10230; Линейная регрессия

<br>

**23. We assume here that y|x;θ∼N(μ,σ2)**

&#10230;
&#10230; Положим, что y|x;θ∼N(μ,σ2)

<br>

Expand Down Expand Up @@ -162,7 +162,7 @@

**28. Classification and logistic regression**

&#10230;
&#10230; Классификация и логистическая регрессия

<br>

Expand Down Expand Up @@ -192,7 +192,7 @@

**33. Generalized Linear Models**

&#10230;
&#10230; Обобщенные линейные модели

<br>

Expand Down