Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ja] cs-229-probability #142

Merged
merged 2 commits into from
Sep 11, 2019
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
381 changes: 381 additions & 0 deletions ja/refresher-probability.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,381 @@
**1. Probabilities and Statistics refresher**

⟶確率と統計
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This should be "確率と統計の復習" to include "refresher" into translation.


<br>

**2. Introduction to Probability and Combinatorics**

&#10230;確率と組合せの紹介
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

In this case, "introduction" could be better translated as "導入" or "初歩" than "紹介".


<br>

**3. Sample space ― The set of all possible outcomes of an experiment is known as the sample space of the experiment and is denoted by S.**

&#10230;標本空間 - 試行可能なすべての結果の集合は標本空間として知られ、Sと表します。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"試行可能なすべての結果" -> "ある試行のすべての起こりうる結果"
"標本空間として知られ" -> "その試行の標本空間として知られ"


<br>

**4. Event ― Any subset E of the sample space is known as an event. That is, an event is a set consisting of possible outcomes of the experiment. If the outcome of the experiment is contained in E, then we say that E has occurred.**

&#10230;事象 - 標本空間のすべての部分集合のEを事象と言います。つまり事象は試行可能な結果で構成された集合です。試行結果がEに含まれるなら、Eが発生した言います。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"すべての部分集合のE" -> "任意の部分集合E": this change could make the intention of this sentence clearer.
"つまり事象は" -> "つまり、ある事象は"
"試行可能な結果で" -> "ある試行の起こりうる結果により"
"試行結果が" -> "ある試行結果が"
"発生した言います" -> "起きたと言います"


<br>

**5. Axioms of probability ― For each event E, we denote P(E) as the probability of event E occuring.**

&#10230;確率の公理 - 各事象Eに対して、事象Eが起こる確率をP(E)と書きます。

<br>

**6. Axiom 1 ― Every probability is between 0 and 1 included, i.e:**

&#10230;公理1 - すべての確立は0と1の間に含まれ次のようになります:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"確立" -> "確率"
"0と1の間に含まれ" -> "0と1を含んでその間にあります。"
"次のようになります:" -> "すなわち:"


<br>

**7. Axiom 2 ― The probability that at least one of the elementary events in the entire sample space will occur is 1, i.e:**

&#10230;公理2 - 全体の標本空間で少なくとも一つの根元事象が起こる確率は1で次のようになります:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"全体の標本空間で" -> "標本空間全体において"
"確率は1で次のようになります" -> "確率は1です。すなわち:"


<br>

**8. Axiom 3 ― For any sequence of mutually exclusive events E1,...,En, we have:**

&#10230;公理3 - 相互に排他的なとある連続した事象E1,...Enに対し、次のようになります:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"相互に排他的なとある連続した事象" -> "互いに排反な事象の任意の数列"
"E1,...En" -> "E1,...,En"
"次のようになります" -> "次が成り立ちます"


<br>

**9. Permutation ― A permutation is an arrangement of r objects from a pool of n objects, in a given order. The number of such arrangements is given by P(n,r), defined as:**

&#10230;順列(Permutation) - 順列はn個の中からr個を順番を考慮して並べられた配列です。このような配列の数はP(n, r)と表し、次のように定義します:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"順列は" -> "順列とは"
"n個の中から" -> "n個のものの中から"
"順序を考慮して" -> "ある順序で"
"並べられた" -> "並べた"
"P(n, r)" -> "P(n,r)"


<br>

**10. Combination ― A combination is an arrangement of r objects from a pool of n objects, where the order does not matter. The number of such arrangements is given by C(n,r), defined as:**

&#10230;組合せ(Combination) - 組合せはn個の中からr個の順番を勘案しない配列です。このような配列の数はC(n,r)と表し、次のように定義します:

<br>

**11. Remark: we note that for 0⩽r⩽n, we have P(n,r)⩾C(n,r)**

&#10230;注釈: 0⩽r⩽nに対し、P(n,r)⩾C(n,r)となります。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"に対し" -> "のとき"


<br>

**12. Conditional Probability**

&#10230;条件付き確率

<br>

**13. Bayes' rule ― For events A and B such that P(B)>0, we have:**

&#10230;ベイズの定理 - P(B)>0のような事象A, Bに対して次となります:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"のような" -> "であるような"
"に対して次となります" -> "に対して、次が成り立ちます"


<br>

**14. Remark: we have P(A∩B)=P(A)P(B|A)=P(A|B)P(B)**

&#10230;注釈: P(A∩B)=P(A)P(B|A)=P(A|B)P(B)となります。

<br>

**15. Partition ― Let {Ai,i∈[[1,n]]} be such that for all i, Ai≠∅. We say that {Ai} is a partition if we have:**

&#10230;分割(Partition) - {Ai,i∈[[1,n]]}はすべてのiに対してAi≠∅としましょう。{Ai}が次のような場合、分割と言います:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"{Ai}が次のような場合、分割と言います" -> "次が成り立つとき、{Ai}は分割であると言います"


<br>

**16. Remark: for any event B in the sample space, we have P(B)=n∑i=1P(B|Ai)P(Ai).**

&#10230;注釈: 標本空間で任意の事象Bに対して、P(B)=n∑i=1P(B|Ai)P(Ai)となります。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"標本空間で" -> "標本空間において"
"となります" -> "が成り立ちます"


<br>

**17. Extended form of Bayes' rule ― Let {Ai,i∈[[1,n]]} be a partition of the sample space. We have:**

&#10230;ベイズの定理の応用 - {Ai,i∈[[1,n]]}を標本空間の分割としましょう。次のようになります:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"としましょう。次のようになります" -> "とすると、次が成り立ちます"


<br>

**18. Independence ― Two events A and B are independent if and only if we have:**

&#10230;独立性 - 次の場合のみ事象AとBは独立であるといいます:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"次の場合のみ事象AとBは独立であるといいます" -> "次が成り立つ場合かつその場合に限り、2つの事象AとBは独立であるといいます" or "2つの事象AとBが独立であることは次が成り立つことと同値です"


<br>

**19. Random Variables**

&#10230;確率変数

<br>

**20. Definitions**

&#10230;定義

<br>

**21. Random variable ― A random variable, often noted X, is a function that maps every element in a sample space to a real line.**

&#10230;確率変数 - 確率変数は主にXと表記し標本空間のすべての要素に実線で対応する関数です。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"確率変数は主にXと表記し" -> "確率変数は、よくXと表記され、"
"標本空間のすべての要素に実線で対応する関数です。" -> "ある標本空間のすべての要素を実数直線に対応させる関数です。"


<br>

**22. Cumulative distribution function (CDF) ― The cumulative distribution function F, which is monotonically non-decreasing and is such that limx→−∞F(x)=0 and limx→+∞F(x)=1, is defined as:**

&#10230;累積分布関数(CDF) - 単調非減少の累積分布関数Fはlimx→−∞F(x)=0 and limx→+∞F(x)=1となり次のように定義します:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"単調非減少の累積分布関数Fは" -> "累積分布関数Fは、単調非減少かつ"
"となり次のように定義します" -> "であり、次のように定義されます"


<br>

**23. Remark: we have P(a<X⩽B)=F(b)−F(a).**

&#10230;注釈: P(a<X⩽B)=F(b)−F(a)となります。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"となります" -> "が成り立ちます"


<br>

**24. Probability density function (PDF) ― The probability density function f is the probability that X takes on values between two adjacent realizations of the random variable.**

&#10230;確率密度関数(PDF) - 確率密度関数Fは隣接する二つの確率変数の間に置かれる確率です。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"確率密度関数F" -> "確率密度関数f"
"隣接する二つの確率変数の間に置かれる確率" -> "確率変数Xが2つの隣接する実現値の間の値をとる確率"


<br>

**25. Relationships involving the PDF and CDF ― Here are the important properties to know in the discrete (D) and the continuous (C) cases.**

&#10230;PDFとCDFとの関係性 - 離散(D)と連続(C)の例から知るべき重要な特性があります。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"との関係性" -> "についての関係性"
"離散(D)と連続(C)の例から知るべき" -> "離散値(D)と連続値(C)のそれぞれの場合について知っておくべき"
"があります" -> "をここに挙げます"


<br>

**26. [Case, CDF F, PDF f, Properties of PDF]**

&#10230;[例、CDF F、PDF f、PDFの特性]
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"例" -> "種類"


<br>

**27. Expectation and Moments of the Distribution ― Here are the expressions of the expected value E[X], generalized expected value E[g(X)], kth moment E[Xk] and characteristic function ψ(ω) for the discrete and continuous cases:**

&#10230;分布の期待値と積率 - 離散または連続の場合、期待値E[X]、一般化した期待値E[g(X)]、k次の積率E[Xk]と特性関数ψ(ω):
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"離散または連続の場合、" -> "離散値と連続値のそれぞれの場合における"
"特性関数ψ(ω):" -> "特性関数ψ(ω)をここに挙げます:"


<br>

**28. Variance ― The variance of a random variable, often noted Var(X) or σ2, is a measure of the spread of its distribution function. It is determined as follows:**

&#10230;分散(Variance) - 確率変数の分散は主にVar(X)またはσ2と表記し、分布関数の散布度を測定したものです。次のように決まります。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"主にVar(X)またはσ2と表記し" -> "、よくVar(X)またはσ2と表記され"
"分布関数の散布度を測定したもの" -> "その確率変数の分布関数のばらつきの尺度"
"決まります" -> "計算されます"


<br>

**29. Standard deviation ― The standard deviation of a random variable, often noted σ, is a measure of the spread of its distribution function which is compatible with the units of the actual random variable. It is determined as follows:**

&#10230;標準偏差(Standard deviation) - 確率変数の標準偏差は主にσと表記し実確率変数の単位をしようする分布関数の散布度を測定したものです。次のように決まります。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"主にσと表記し" -> "、よくσと表記され、"
"実確率変数の単位をしようする分布関数の散布度を測定したものです" -> "その確率変数の分布関数のばらつきの尺度であり、その確率変数の単位に則ったものです"
"決まります" -> "計算されます"


<br>

**30. Transformation of random variables ― Let the variables X and Y be linked by some function. By noting fX and fY the distribution function of X and Y respectively, we have:**

&#10230;確率変数の変換 - 変数XとYは任意の関数に繋がってるとします。fXとfYに各々XとYの分布関数を表記すると次のようになります:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"任意の関数に繋がってる" -> "なんらかの関数により関連づけられている"
"fXとfYに各々XとYの分布関数を表記する" -> "fXとfYをそれぞれXとYの分布関数として表記する"
"次のようになります" -> "次が成り立ちます"


<br>

**31. Leibniz integral rule ― Let g be a function of x and potentially c, and a,b boundaries that may depend on c. We have:**

&#10230;ライプニッツ積分法 - gをxの関数とし、暫定的にcとしましょう。そしてcに従属的な境界a,bに対して次のようになります。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"ライプニッツ積分法" -> "ライプニッツの積分則"
"gをxの関数とし、暫定的にcとしましょう。" -> "gをxと潜在的にcの関数とし、"
"そしてcに従属的な境界a,bに対して" -> "a,bをcに従属的な境界とすると、"
"次のようになります" -> "次が成り立ちます"


<br>

**32. Probability Distributions**

&#10230;確率分布

<br>

**33. Chebyshev's inequality ― Let X be a random variable with expected value μ. For k,σ>0, we have the following inequality:**

&#10230;チェビシェフの不等式 - Xを期待値μをの確率変数とします。kに対して、σ>0なら次のような不等式を持ちます。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"期待値μをの" -> "期待値μの"
"kに対して、σ>0なら" -> "k,σ>0のとき"
"次のような不等式を持ちます。" -> "次の不等式が成り立ちます:"


<br>

**34. Main distributions ― Here are the main distributions to have in mind:**

&#10230;主な分布 - 覚えておくべき主な分布があります:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"覚えておくべき主な分布があります" -> "覚えておくべき主な分布をここに挙げます"


<br>

**35. [Type, Distribution]**

&#10230;[タイプ、分布]
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"タイプ" -> "種類" To keep consistency with part 26.


<br>

**36. Jointly Distributed Random Variables**

&#10230;結合確率変数
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"結合確率変数" -> "同時分布の確率変数"
The term "同時分布" would be more popular than "結合分布".


<br>

**37. Marginal density and cumulative distribution ― From the joint density probability function fXY , we have**

&#10230;周辺密度と累積分布 - 結合密度確率関数fXYから次のようになります。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"結合" -> "同時"
"密度確率関数" -> "確率密度関数" ('Density probability function' should be 'probability density function'.)
"次のようになります" -> "次が成り立ちます"


<br>

**38. [Case, Marginal density, Cumulative function]**

&#10230;[例,、周辺密度、累積関数]
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"例" -> "種類"


<br>

**39. Conditional density ― The conditional density of X with respect to Y, often noted fX|Y, is defined as follows:**

&#10230;条件部密度(Conditional density) - Yに対するXの条件部密度は主にfx|Yと表記され、次のように定義されます:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"条件部密度" -> "条件付き密度"
"主に" -> "よく"
"fx|Y" -> "fX|Y"


<br>

**40. Independence ― Two random variables X and Y are said to be independent if we have:**

&#10230;独立性(Independence) - 二つの確率変数XとYは次の場合、独立的と言います。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"二つの" -> "2つの" for consistency.
"次の場合" -> "次が成り立つとき"
"独立的" -> "独立である"
"言います。" -> "言います:"


<br>

**41. Covariance ― We define the covariance of two random variables X and Y, that we note σ2XY or more commonly Cov(X,Y), as follows:**

&#10230;共分散(Covariance) - 次のようにふたつの確率変数X,Yの共分散をσ2XYまたはさらに一般的にはCov(X,Y)で定義します。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"ふたつの" -> "2つの" for consistency.
"X,Yの" -> "XとYの"
"次のようにふたつの確率変数X,Yの共分散をσ2XYまたはさらに一般的にはCov(X,Y)で定義します。" -> "2つの確率変数XとYの共分散を、σ2XYまたはより一般的にはCov(X,Y)と表記し、次のように定義します:"


<br>

**42. Correlation ― By noting σX,σY the standard deviations of X and Y, we define the correlation between the random variables X and Y, noted ρXY, as follows:**

&#10230;相関関係(Correlation) - X, Yの標準変数をσX,σYで表記し、確率変数X,Yの相関関係をρXYで表記し、次のように定義します。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"相関関係" -> "相関係数"
"標準変数" -> "標準偏差"
"で表記し" -> "と表記し"
"定義します。" -> "定義します:"


<br>

**43. Remark 1: we note that for any random variables X,Y, we have ρXY∈[−1,1].**

&#10230;注釈 1: 任意の確率変数X,Yに対してρXY∈[−1,1]となります。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"となります" -> "が成り立ちます"


<br>

**44. Remark 2: If X and Y are independent, then ρXY=0.**

&#10230;注釈 2: XとYが独立ならρXY=0です。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"なら" -> "ならば、"


<br>

**45. Parameter estimation**

&#10230;母数推定

<br>

**46. Definitions**

&#10230;定義

<br>

**47. Random sample ― A random sample is a collection of n random variables X1,...,Xn that are independent and identically distributed with X.**

&#10230;確率標本(Random sample) - 確率標本はXと独立で同一に分布するn個の確率変数X1,...,Xnの集まりです。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"確率標本は" -> "確率標本とは"
"Xと独立で同一に分布する" -> "Xに従う独立同分布の"
"集まり" -> "集合"


<br>

**48. Estimator ― An estimator is a function of the data that is used to infer the value of an unknown parameter in a statistical model.**

&#10230;推定量(Estimator) - 推定量は統計モデルで未知のパラメータの値を推定するために使用されるデータの関数です。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"推定量は" -> "推定量とは"
"統計モデルで" -> "統計モデルにおける"
"推定するために使用される" -> "推定するのに用いられる" for consistency.


<br>

**49. Bias ― The bias of an estimator ^θ is defined as being the difference between the expected value of the distribution of ^θ and the true value, i.e.:**

&#10230;偏り(Bias) - 推定量^θの偏りは^θの期待値と実際の値との差で定義されます。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"^θの期待値" -> "^θのの分布の期待値"
"実際の値" -> "真の値"
"で定義されます。" -> "として定義されます。すなわち:"


<br>

**50. Remark: an estimator is said to be unbiased when we have E[^θ]=θ.**

&#10230;注釈: 推定量はE[^θ]=θの場合、不偏といいます。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"推定量はE[^θ]=θの場合、不偏といいます。" -> "E[^θ]=θが成り立つとき、推定量は不偏であるといいます。"


<br>

**51. Estimating the mean**

&#10230;平均の推定

<br>

**52. Sample mean ― The sample mean of a random sample is used to estimate the true mean μ of a distribution, is often noted ¯¯¯¯¯X and is defined as follows:**

&#10230;標本平均(Sample mean) - 確率標本の標本平均は実の平均μを推定するのに用いられ、主に¯¯¯¯¯Xと表記され次のように定義されます。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"は実の平均" -> "は、ある分布の真の平均"
"主に" -> "よく"
"表記され" -> "表記され、"
"定義されます。" -> "定義されます:"


<br>

**53. Remark: the sample mean is unbiased, i.e E[¯¯¯¯¯X]=μ.**

&#10230;注釈: 標本平均は不偏です。すなわちE[¯¯¯¯¯X]=μとなります。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"となります。" -> "が成り立ちます。"


<br>

**54. Central Limit Theorem ― Let us have a random sample X1,...,Xn following a given distribution with mean μ and variance σ2, then we have:**

&#10230;中心極限定理 - 平均μと分散σ2を持つ分布を従う確率標本X1,...,Xnがある。その場合、次のようになります。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"平均μと分散σ2を持つ分布を従う確率標本X1,...,Xnがある。" -> "確率標本X1,...,Xnが平均μと分散σ2を持つある分布に従うとすると、"
"その場合、次のようになります。" -> "次が成り立ちます:"


<br>

**55. Estimating the variance**

&#10230;分散推定
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"分散推定" -> "分散の推定"


<br>

**56. Sample variance ― The sample variance of a random sample is used to estimate the true variance σ2 of a distribution, is often noted s2 or ^σ2 and is defined as follows:**

&#10230;標本分散 - 確率標本の標本分散は実の分散σ2を推定するのに用いられ、主にs2または^σ2と表記し次のように定義されます。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"は実の分散" -> "は、ある分布の真の分散"
"主に" -> "よく"
"表記し" -> "表記され、" for consistency.
"定義されます。" -> "定義されます:"


<br>

**57. Remark: the sample variance is unbiased, i.e E[s2]=σ2.**

&#10230;注釈: 標本分散は不偏です。つまりE[s2]=σ2になります。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"つまり" -> "すなわち" for consistency.
"になります。" -> "が成り立ちます。"


<br>

**58. Chi-Squared relation with sample variance ― Let s2 be the sample variance of a random sample. We have:**

&#10230;標本分散とカイ二乗の関係 - 確率標本の標本分散をs2としよう。次のようになります。
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"カイ二乗の関係" -> "カイ二乗分布との関係"
"としよう。次のようになります。" -> "とすると、次が成り立ちます:"


<br>

**59. [Introduction, Sample space, Event, Permutation]**

&#10230;[紹介、標本空間、事象、順列]
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"紹介" -> "導入"


<br>

**60. [Conditional probability, Bayes' rule, Independence]**

&#10230;[条件部確率、ベイズの定理、独立]
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"条件部確率" -> "条件付き確率"


<br>

**61. [Random variables, Definitions, Expectation, Variance]**

&#10230;[確率変数、定義、期待値、分散]

<br>

**62. [Probability distributions, Chebyshev's inequality, Main distributions]**

&#10230;[確率分布、チェビシェフの不等式、主な分布]

<br>

**63. [Jointly distributed random variables, Density, Covariance, Correlation]**

&#10230;[結合分布の確率変数、密度、共分散、相関関係]
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"結合分布の確率変数" -> "同時分布の確率変数" for consistency.
"相関関係" -> "相関係数"


<br>

**64. [Parameter estimation, Mean, Variance]**

&#10230;[母数推定、平均、分散]