-
Notifications
You must be signed in to change notification settings - Fork 334
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[de] cs-229-linear-algebra #136
base: master
Are you sure you want to change the base?
Conversation
Hi @bb08, thank you again for all your work! Would you know someone who could take a look at your translation? After the review phase, we can merge your translation to the repository. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
some tweaks (precision and minor spelling corrections) on a - in general - high quality translation
de/refresher-linear-algebra.md
Outdated
|
||
<br> | ||
|
||
**15. inner product: for x,y∈Rn, we have:** | ||
|
||
⟶ | ||
⟶ Innere Produkt: Auch Skalarprodukt, Es gilt x,y∈Rn:** |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
⟶ inneres Produkt: auch Skalarprodukt, Es gilt x,y∈Rn:**
de/refresher-linear-algebra.md
Outdated
|
||
<br> | ||
|
||
**26. Trace ― The trace of a square matrix A, noted tr(A), is the sum of its diagonal entries:** | ||
|
||
⟶ | ||
⟶ Spur - Die Spurabbildung einer quadratischen Matrix A, geschrieben als tr(A), ist die summe der Diagonaleinheiten: |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
⟶ Spur - Die Spurabbildung (Spurfunktion) einer quadratischen Matrix A, geschrieben als tr(A), ist die Summe der Diagonaleinheiten:
de/refresher-linear-algebra.md
Outdated
|
||
<br> | ||
|
||
**29. Remark: A is invertible if and only if |A|≠0. Also, |AB|=|A||B| and |AT|=|A|.** | ||
|
||
⟶ | ||
⟶ Wichtig: A ist nur invertierbar falls |A|≠0. Weiteres gilt |AB|=|A||B| and |AT|=|A| |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
⟶ Wichtig: A ist nur invertierbar, falls |A|≠0. Des Weiteren gilt |AB|=|A||B| and |AT|=|A|
de/refresher-linear-algebra.md
Outdated
|
||
<br> | ||
|
||
**43. Remark: similarly, a matrix A is said to be positive definite, and is noted A≻0, if it is a PSD matrix which satisfies for all non-zero vector x, xTAx>0.** | ||
|
||
⟶ | ||
⟶ Wichtig: Ebenfalls gilt, Eine Matrix A ist positiv definit, A≻0, falls diese eine PSD Matrix ist und es gilt für alle Einheiten eines Vektors x ungleich 0: x, xTAx>0. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
⟶ Wichtig: Ebenfalls gilt, dass eine Matrix A positiv definit ist, in der Notatition: A≻0, falls diese eine PSD Matrix ist und es gilt für alle Einheiten eines Vektors x ungleich 0: x, xTAx>0.
de/refresher-linear-algebra.md
Outdated
|
||
<br> | ||
|
||
**44. Eigenvalue, eigenvector ― Given a matrix A∈Rn×n, λ is said to be an eigenvalue of A if there exists a vector z∈Rn∖{0}, called eigenvector, such that we have:** | ||
|
||
⟶ | ||
⟶ Eigenwert, Eigenvektor - Sei A∈Rn×n eine Matrix und λ der Eigentwert von A, falls es einen Vektor z∈Rn∖{0} gibt, Eigentvektor genannt, gilt folgendes: |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
⟶ Eigenwert, Eigenvektor - Sei A∈Rn×n eine Matrix und λ der Eigenwert von A, falls es einen Vektor z∈Rn∖{0}, Eigenvektor genannt, gibt. Dann gilt:
de/refresher-linear-algebra.md
Outdated
|
||
<br> | ||
|
||
**45. Spectral theorem ― Let A∈Rn×n. If A is symmetric, then A is diagonalizable by a real orthogonal matrix U∈Rn×n. By noting Λ=diag(λ1,...,λn), we have:** | ||
|
||
⟶ | ||
⟶ Spektralsatz - Sei A∈Rn×n, falls A eine symmetrische Matrix, dann ist diese diagonalisierbar durch eine orthogonale Matrix U∈Rn×n. Durch Λ=diag(λ1,...,λn) gilt folgendes: |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
⟶ Spektralsatz - Sei A∈Rn×n, falls A eine symmetrische Matrix, dann ist diese diagonalisierbar durch eine orthogonale Matrix U∈Rn×n. Mit der Notation Λ=diag(λ1,...,λn) gilt folgendes:
Hey! Done, I added @dee1337 suggestions |
Hey! German natives welcome, happy to have some discussion and corrections about the translation
Cheers