Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

semifp: Add a method for IsomorphismFpSemigroup #426

Merged
merged 2 commits into from
Jan 17, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
98 changes: 97 additions & 1 deletion gap/semigroups/semifp.gi
Original file line number Diff line number Diff line change
Expand Up @@ -298,7 +298,7 @@ function(S)
spos := Position(sgens, sgens[i]);
mpos := Position(mgens, sgens[i], start[spos]);
lookup[i] := mpos;
if spos <> fail then
if mpos <> fail then
start[spos] := mpos;
fi;
od;
Expand Down Expand Up @@ -541,3 +541,99 @@ IsCollsElms, [IsFpSemigroup, IsElementOfFpSemigroup],
function(S, x)
return SEMIGROUPS.ExtRepObjToWord(ExtRepOfObj(x));
end);

# This method is based on the following paper
# Presentations of Factorizable Inverse Monoids
# David Easdown, James East, and D. G. FitzGerald
# July 19, 2004
InstallMethod(IsomorphismFpSemigroup,
"for an inverse partial perm semigroup",
[IsPartialPermSemigroup and IsInverseActingSemigroupRep],
function(M)
local add_to_odd_positions, S, SS, G, GG, s, g, F, rels, fam, alpha,
beta, lhs, rhs, map, H, o, comp, U, rhs_list, conj, MF, T, inv, rel, x, y, m,
i;

if not IsFactorisableInverseMonoid(M) then
TryNextMethod();
fi;

add_to_odd_positions := function(list, s)
list{[1, 3 .. Length(list) - 1]} := list{[1, 3 .. Length(list) - 1]} + s;
return list;
end;

S := Semigroup(IdempotentGeneratedSubsemigroup(M));
SS := GeneratorsOfSemigroup(S);
G := GroupOfUnits(M);
GG := GeneratorsOfSemigroup(G);
s := Length(GeneratorsOfSemigroup(S));
g := Length(GeneratorsOfSemigroup(G));

F := FreeSemigroup(s + g);
rels := [];
fam := ElementsFamily(FamilyObj(F));

# R_S - semigroup relations for the idempotent generated subsemigroup
alpha := IsomorphismFpSemigroup(S);
for rel in RelationsOfFpSemigroup(Image(alpha)) do
Add(rels, [ObjByExtRep(fam, ExtRepOfObj(rel[1])),
ObjByExtRep(fam, ExtRepOfObj(rel[2]))]);
od;

# R_G - semigroup relations for the group of units
beta := IsomorphismFpSemigroup(G);
for rel in RelationsOfFpSemigroup(Image(beta)) do
lhs := add_to_odd_positions(ShallowCopy(ExtRepOfObj(rel[1])), s);
rhs := add_to_odd_positions(ShallowCopy(ExtRepOfObj(rel[2])), s);
Add(rels, [ObjByExtRep(fam, lhs), ObjByExtRep(fam, rhs)]);
od;

# R_product - see page 4 of the paper
for x in [1 .. s] do
for y in [1 .. g] do
rhs := Factorization(S, SS[x] ^ (GG[y] ^ -1));
Add(rels, [F.(s + y) * F.(x),
EvaluateWord(GeneratorsOfSemigroup(F), rhs) * F.(s + y)]);
od;
od;

map := InverseGeneralMapping(IsomorphismPermGroup(G));
H := Source(map);
o := Enumerate(LambdaOrb(M));
#R_tilde - see page 4 of the paper
for m in [2 .. Length(OrbSCC(o))] do
comp := OrbSCC(o)[m];
U := SmallGeneratingSet(Stabilizer(H,
PartialPerm(o[comp[1]], o[comp[1]]),
OnRight));

for i in comp do
rhs_list := Factorization(S, PartialPerm(o[i], o[i]));
rhs := EvaluateWord(GeneratorsOfSemigroup(F), rhs_list);
conj := MappingPermListList(o[comp[1]], o[i]);
for x in List(U, x -> x ^ conj) do
lhs := ShallowCopy(rhs_list);
Append(lhs, Factorization(G, x ^ map) + s);
Add(rels, [EvaluateWord(GeneratorsOfSemigroup(F), lhs), rhs]);
od;
od;
od;

# Relation to indentify One(G) and One(S)
Add(rels, [EvaluateWord(GeneratorsOfSemigroup(F),
Factorization(G, One(G)) + s),
EvaluateWord(GeneratorsOfSemigroup(F),
Factorization(S, One(S)))]);

MF := F / rels; # FpSemigroup which is isomorphic to M, with different gens.
fam := ElementsFamily(FamilyObj(MF));
T := Semigroup(Concatenation(SS, GG)); # M with isomorphic generators to MF

map := x -> ElementOfFpSemigroup(fam, EvaluateWord(GeneratorsOfSemigroup(F),
Factorization(T, x)));
inv := x -> EvaluateWord(GeneratorsOfSemigroup(T),
SEMIGROUPS.ExtRepObjToWord(ExtRepOfObj(x)));

return MagmaIsomorphismByFunctionsNC(M, MF, map, inv);
end);
61 changes: 61 additions & 0 deletions tst/standard/semifp.tst
Original file line number Diff line number Diff line change
Expand Up @@ -2060,6 +2060,67 @@ gap> SEMIGROUPS.ExtRepObjToString([100, 1]);
Error, SEMIGROUPS.ExtRepObjToString: the maximum value in an odd position of t\
he argument must be at most 52,

# Test IsomorphismFpSemigroup (for factorizable inverse monoids)
gap> S := SymmetricInverseMonoid(4);;
gap> iso := IsomorphismFpSemigroup(S);;
gap> BruteForceIsoCheck(iso);
true
gap> BruteForceInverseCheck(iso);
true
gap> S := InverseSemigroup(
> [PartialPerm([1, 2, 3, 4, 5, 6, 7, 8], [2, 4, 8, 6, 3, 1, 5, 7]),
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 8], [3, 5, 4, 7, 6, 8, 1, 2]),
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 8], [4, 6, 7, 1, 8, 2, 3, 5]),
> PartialPerm([], [])]);;
gap> iso := IsomorphismFpSemigroup(S);;
gap> BruteForceIsoCheck(iso);
true
gap> BruteForceInverseCheck(iso);
true
gap> S := InverseSemigroup(
> [PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [9, 10, 8, 2, 1, 7, 5, 4, 6, 3]),
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [10, 9, 3, 6, 5, 2, 8, 1, 4, 7]),
> PartialPerm([], [])]);;
gap> iso := IsomorphismFpSemigroup(S);;
gap> BruteForceIsoCheck(iso);
true
gap> BruteForceInverseCheck(iso);
true
gap> tst := [InverseMonoid([PartialPerm([1, 2, 3, 4, 5], [4, 5, 2, 3, 1]),
> PartialPerm([1, 3], [1, 3])]),
> InverseMonoid([PartialPerm([1, 2, 3, 4], [1, 2, 3, 4]),
> PartialPerm([1, 2, 3, 4, 5], [3, 1, 5, 4, 2])]),
> InverseMonoid([PartialPerm([1, 2, 3, 4, 5], [5, 4, 2, 3, 1]),
> PartialPerm([1, 2, 4], [1, 2, 4])]),
> InverseMonoid([PartialPerm([1, 2, 5], [2, 1, 5]),
> PartialPerm([1, 2], [1, 2])]),
> InverseMonoid([PartialPerm([1, 2, 3], [1, 4, 5]),
> PartialPerm([1, 2, 3, 4, 5], [1, 5, 4, 2, 3])]),
> InverseMonoid([PartialPerm([1, 2, 3, 4, 5], [3, 1, 5, 4, 2]),
> PartialPerm([1, 2, 3, 4, 5], [5, 1, 3, 4, 2])]),
> InverseMonoid([PartialPerm([1, 2, 5], [2, 3, 5]),
> PartialPerm([1, 2, 3, 5], [2, 3, 1, 5])]),
> InverseMonoid([PartialPerm([1, 2, 3, 4, 5], [4, 2, 3, 1, 5]),
> PartialPerm([1, 2, 3, 4, 5], [5, 3, 2, 1, 4])]),
> InverseMonoid([PartialPerm([1, 2, 3, 5], [2, 1, 3, 5]),
> PartialPerm([1, 2, 3, 5], [5, 2, 1, 3])]),
> InverseMonoid([PartialPerm([1, 2, 3], [5, 4, 1]),
> PartialPerm([1, 2, 3, 4, 5], [2, 3, 5, 1, 4])]),
> InverseMonoid([PartialPerm([1, 2, 3, 4, 5], [4, 3, 5, 2, 1]),
> PartialPerm([1, 2, 4, 5], [5, 4, 2, 1]),
> PartialPerm([1, 4], [3, 2]), PartialPerm([1, 2, 3, 4, 5], [2, 3, 5, 1, 4]),
> PartialPerm([1, 2, 5], [2, 3, 4])]),
> InverseMonoid([PartialPerm([1, 2, 3, 4, 5], [2, 4, 1, 5, 3]),
> PartialPerm([1, 3, 4], [2, 1, 3]),
> PartialPerm([1, 2, 3, 4, 5], [4, 1, 2, 5, 3]), PartialPerm([1, 3], [5, 4]),
> PartialPerm([1, 3, 5], [2, 4, 1])])];;
gap> ForAll(tst, IsFactorisableInverseMonoid);
true
gap> ForAll(tst, S -> BruteForceIsoCheck(IsomorphismFpSemigroup(S)));
true
gap> ForAll(tst{[1 .. 10]}, S -> BruteForceInverseCheck(IsomorphismFpSemigroup(S)));
true

#T# SEMIGROUPS_UnbindVariables
gap> Unbind(BruteForceInverseCheck);
gap> Unbind(BruteForceIsoCheck);
Expand Down