Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Changed cp_als() param 'tensor' to 'input_tensor' to avoid ambiguity #118

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 12 additions & 10 deletions pyttb/cp_als.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@


def cp_als(
tensor,
input_tensor,
rank,
stoptol=1e-4,
maxiters=1000,
Expand Down Expand Up @@ -114,8 +114,8 @@ def cp_als(
"""

# Extract number of dimensions and norm of tensor
N = tensor.ndims
normX = tensor.norm()
N = input_tensor.ndims
normX = input_tensor.norm()

# Set up dimorder if not specified
if not dimorder:
Expand All @@ -139,17 +139,19 @@ def cp_als(
init.ncomponents == rank
), "Initial guess does not have {} components".format(rank)
for n in dimorder:
if init.factor_matrices[n].shape != (tensor.shape[n], rank):
if init.factor_matrices[n].shape != (input_tensor.shape[n], rank):
assert False, "Mode {} of the initial guess is the wrong size".format(n)
elif isinstance(init, str) and init.lower() == "random":
factor_matrices = []
for n in range(N):
factor_matrices.append(np.random.uniform(0, 1, (tensor.shape[n], rank)))
factor_matrices.append(
np.random.uniform(0, 1, (input_tensor.shape[n], rank))
)
init = ttb.ktensor.from_factor_matrices(factor_matrices)
elif isinstance(init, str) and init.lower() == "nvecs":
factor_matrices = []
for n in range(N):
factor_matrices.append(tensor.nvecs(n, rank))
factor_matrices.append(input_tensor.nvecs(n, rank))
init = ttb.ktensor.from_factor_matrices(factor_matrices)
else:
assert False, "The selected initialization method is not supported"
Expand All @@ -159,7 +161,7 @@ def cp_als(
fit = 0

# Store the last MTTKRP result to accelerate fitness computation
U_mttkrp = np.zeros((tensor.shape[dimorder[-1]], rank))
U_mttkrp = np.zeros((input_tensor.shape[dimorder[-1]], rank))

if printitn > 0:
print("CP_ALS:")
Expand All @@ -176,7 +178,7 @@ def cp_als(
# Iterate over all N modes of the tensor
for n in dimorder:
# Calculate Unew = X_(n) * khatrirao(all U except n, 'r').
Unew = tensor.mttkrp(U, n)
Unew = input_tensor.mttkrp(U, n)

# Save the last MTTKRP result for fitness check.
if n == dimorder[-1]:
Expand Down Expand Up @@ -245,11 +247,11 @@ def cp_als(

if printitn > 0:
if normX == 0:
normresidual = M.norm() ** 2 - 2 * tensor.innerprod(M)
normresidual = M.norm() ** 2 - 2 * input_tensor.innerprod(M)
fit = normresidual
else:
normresidual = np.sqrt(
np.abs(normX**2 + M.norm() ** 2 - 2 * tensor.innerprod(M))
np.abs(normX**2 + M.norm() ** 2 - 2 * input_tensor.innerprod(M))
)
fit = 1 - (normresidual / normX) # fraction explained by model
print(f" Final f = {fit:e}")
Expand Down