Skip to content

A convenient way to use and explore multiple databases from Python

License

Notifications You must be signed in to change notification settings

sancau/givemedata

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

givemedata

A convenient way to use and explore multiple databases from Python

What is this?

Using multiple data sources may become a pain to manage. You have different credentials here and there, different db names, different drivers and wrappers. You don't like that, do you?

  • Givemedata is a Python tool that allows to define a single configuration file containing all the data sources that you are using
  • The tool introduces a simple way to access all of those data sources either by leveraging the power of Pandas or by providing you with raw driver connection/engine.
  • It is also really helpful when you need to maintain a shared configuration that can be used by multiple users (for example a data science team or an analytics department)

Consider example usage scenario described below:

Step 1 (Installation):

pip install -U givemedata

Step 2 (Configuration):

First of all you will need to create a configuration file in YAML format.

Givemedata provides sensible defaults on where to store configuration file.

Optionally, it's aslo possible to specify config directory by setting ENV variable with name GIVEMEDATA_CONFIG_DIR. If set, this directory will be prioritized among other defaults.

Givemedata will walk through the prioritized list of possible paths and load the first configuration met.

The prioritized lists for Linux, Windows and MacOS are shown below:

Linux (ordered by priority)
  • $GIVEMEDATA_CONFIG_DIR/.givemedata.yaml
  • $GIVEMEDATA_CONFIG_DIR/.givemedata.yml
  • $GIVEMEDATA_CONFIG_DIR/givemedata.yaml
  • $GIVEMEDATA_CONFIG_DIR/givemedata.yml
  • $HOME/.givemedata.yaml
  • $HOME/.givemedata.yml
  • $HOME/givemedata.yaml
  • $HOME/givemedata.yml
  • /etc/givemedata/.givemedata.yaml
  • /etc/givemedata/.givemedata.yml
  • /etc/givemedata/givemedata.yaml
  • /etc/givemedata/givemedata.yml
Windows (ordered by priority)
  • %GIVEMEDATA_CONFIG_DIR%/.givemedata.yaml
  • %GIVEMEDATA_CONFIG_DIR%/.givemedata.yml
  • %GIVEMEDATA_CONFIG_DIR%/givemedata.yaml
  • %GIVEMEDATA_CONFIG_DIR%/givemedata.yml
  • %HOME%/.givemedata.yaml
  • %HOME%/.givemedata.yml
  • %HOME%/givemedata.yaml
  • %HOME%/givemedata.yml
  • %APPDATA%/givemedata/.givemedata.yaml
  • %APPDATA%/givemedata/.givemedata.yml
  • %APPDATA%/givemedata/givemedata.yaml
  • %APPDATA%/givemedata/givemedata.yml
  • %PROGRAMDATA%/givemedata/.givemedata.yaml
  • %PROGRAMDATA%/givemedata/.givemedata.yml
  • %PROGRAMDATA%/givemedata/givemedata.yaml
  • %PROGRAMDATA%/givemedata/givemedata.yml
MacOS (ordered by priority)
  • $GIVEMEDATA_CONFIG_DIR/.givemedata.yaml
  • $GIVEMEDATA_CONFIG_DIR/.givemedata.yml
  • $GIVEMEDATA_CONFIG_DIR/givemedata.yaml
  • $GIVEMEDATA_CONFIG_DIR/givemedata.yml
  • $HOME/.givemedata.yaml
  • $HOME/.givemedata.yml
  • $HOME/givemedata.yaml
  • $HOME/givemedata.yml
  • $HOME/Library/givemedata/.givemedata.yaml
  • $HOME/Library/givemedata/.givemedata.yml
  • $HOME/Library/givemedata/givemedata.yaml
  • $HOME/Library/givemedata/givemedata.yml
  • /Library/givemedata/.givemedata.yaml
  • /Library/givemedata/.givemedata.yml
  • /Library/givemedata/givemedata.yaml
  • /Library/givemedata/givemedata.yml

The priority system is helpful when you need to provide the configuration to multiple users at once (e.g. if you're using JupyterHub)

The file must be named either givemedata.yaml or .givemedata.yaml in case if you prefer to have a hidden file. File extension can be either .yaml or .yml.

Example of configuration:
Work:
  Prod:
    WebApp:
      RO: postgresql://read_only_user:[email protected]:5432/web
      RW: postgresql://read_write_user:[email protected]:5432/web
    Analytics: postgresql://analytics_prod_user:[email protected]:5432/analytics
  Stage:
    Analytics: postgresql://analytics_stage_user:[email protected]:5432/analytics
Personal:
  ML_class: postgresql://me:[email protected]:5432/ml

As you can see givemedata supports hierarhical structure where you can logically place your data sources in a way that is most intuitive and clear.

Basically you define a dictionary-like stucture that can be recursively nested. Data sources are defined as connection strinsg like this: <DB_TYPE>://<DB_USER>:<DB_PASSWORD>@<IP>:<PORT>/web_app_backend

Step 3 (Loading givemedata object):

In a Python console of your choice (IPython, Jupyter, an IDE, whatever..):

from givemedata import Data

Data is an interface object created by givemedata based on the config you've just specified. It has the same nested structure as the config and even supports autocompletion :)

Let's assume we want to address the Analytics db on production. This can me made as easy as this:

db = Data.Work.Prod.Analytics

Step 4 (Using data sources):

The DB object in givemedata have a few methods attached to it:

  • sql(query, *, limit) -> returns an SQL query result as a Pandas DataFrame
  • public_tables (property) -> returns a dataframe with information about all public tables in the DB.
  • all_tables (property) -> returns a dataframe with information about all tables in the DB - both public and service.
  • public_fields (property) -> all public fields
  • all_fields (property) -> all fields, public and service
These properties also provide some helpers:
  • (for both - fields and tables)

  • search(term_as_string) -> searches the table/field names by the given term -> returns object similar to itself so can be chained

  • sample(df_index_as_int) -> displays sample of table rows or field values

  • (for tables only)

  • describe(df_index_as_int) -> displays meta data about the table - fields, datatypes, etc

Using DB driver directly

Use special provider methods:

  • get_connection()
  • get_engine()

About

A convenient way to use and explore multiple databases from Python

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages