Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
dxli94 authored Sep 25, 2023
1 parent e6b5dd4 commit b693170
Showing 1 changed file with 81 additions and 0 deletions.
81 changes: 81 additions & 0 deletions projects/blip-diffusion/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,87 @@ pip install -e .
- **Virtual Try-On via Subject-driven Editing**:
- the model can be used to naturally facilitate virtual try-on. We provide an zero-shot example: [notebook](https://github.com/salesforce/LAVIS/blob/main/projects/blip-diffusion/notebooks/editing_tryon_zeroshot.ipynb), [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/salesforce/LAVIS/blob/main/projects/blip-diffusion/notebooks/editing_tryon_zeroshot.ipynb);

### **🧨 Diffusers Support**
BLIP-Diffusion is now supported in 🧨[Diffusers](https://huggingface.co/docs/diffusers/main/en/api/pipelines/blip_diffusion).
- Example on subject-driven generation:
```python
from diffusers.pipelines import BlipDiffusionPipeline
from diffusers.utils import load_image
import torch

blip_diffusion_pipe = BlipDiffusionPipeline.from_pretrained(
"Salesforce/blipdiffusion", torch_dtype=torch.float16
).to("cuda")


cond_subject = "dog"
tgt_subject = "dog"
text_prompt_input = "swimming underwater"

cond_image = load_image(
"https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/dog.jpg"
)
guidance_scale = 7.5
num_inference_steps = 25
negative_prompt = "over-exposure, under-exposure, saturated, duplicate, out of frame, lowres, cropped, worst quality, low quality, jpeg artifacts, morbid, mutilated, out of frame, ugly, bad anatomy, bad proportions, deformed, blurry, duplicate"


output = blip_diffusion_pipe(
text_prompt_input,
cond_image,
cond_subject,
tgt_subject,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
neg_prompt=negative_prompt,
height=512,
width=512,
).images
output[0].save("image.png")
```
- Example on subject-driven stylization
```python
from diffusers.pipelines import BlipDiffusionControlNetPipeline
from diffusers.utils import load_image
from controlnet_aux import CannyDetector
import torch

blip_diffusion_pipe = BlipDiffusionControlNetPipeline.from_pretrained(
"Salesforce/blipdiffusion-controlnet", torch_dtype=torch.float16
).to("cuda")

style_subject = "flower"
tgt_subject = "teapot"
text_prompt = "on a marble table"

cldm_cond_image = load_image(
"https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/kettle.jpg"
).resize((512, 512))
canny = CannyDetector()
cldm_cond_image = canny(cldm_cond_image, 30, 70, output_type="pil")
style_image = load_image(
"https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/flower.jpg"
)
guidance_scale = 7.5
num_inference_steps = 50
negative_prompt = "over-exposure, under-exposure, saturated, duplicate, out of frame, lowres, cropped, worst quality, low quality, jpeg artifacts, morbid, mutilated, out of frame, ugly, bad anatomy, bad proportions, deformed, blurry, duplicate"


output = blip_diffusion_pipe(
text_prompt,
style_image,
cldm_cond_image,
style_subject,
tgt_subject,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
neg_prompt=negative_prompt,
height=512,
width=512,
).images
output[0].save("image.png")
```


### Cite BLIP-Diffusion
If you find our work helpful, please consider citing:
Expand Down

0 comments on commit b693170

Please sign in to comment.