Skip to content

Pytorch implementation of "Estimating the Success of Unsupervised Image to Image Translation" ECCV 2018

License

Notifications You must be signed in to change notification settings

sagiebenaim/gan_bound

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Estimating the Success of Unsupervised Image to Image Translation

Pytorch implementation of "Estimating the Success of Unsupervised Image to Image Translation" (arxiv).

Prerequisites

  • Python 2.7
  • Pytorch
  • Numpy/Scipy/Pandas
  • Progressbar
  • OpenCV

Download dataset

Download dataset [edges2shoes, edges2handbags, cityscapes, maps, facades]: bash datasets/download_pix2pix.sh $DATASET_NAME.

General GAN Bound (Alg.1 and Alg.2)

DiscoGAN: python ./discogan_arch/general_gan_bound_discogan.py --task_name=$DATASET_NAME

DistanceGAN: python ./discogan_arch/general_gan_bound_distancegan.py --task_name=$DATASET_NAME

Per Sample Bound (Alg.3)

Train G_1 model:

DiscoGAN: python ./discogan_arch/disco_gan_model.py --task_name=$DATASET_NAME --num_layers=3

DistanceGAN: python ./discogan_arch/general_gan_bound_distancegan.py --task_name=$DATASET_NAME

Then Train G_2:

DiscoGAN: python ./discogan_arch/gan_bound_per_sample_discogan.py --task_name=$DATASET_NAME --pretrained_generator_A_path='./models/model_gen_A-10' --pretrained_generator_B_path='./models/model_gen_B-10' --pretrained_discriminator_A_path='./models/model_dis_A-10' --pretrained_discriminator_B_path='./models/model_dis_B-10' --one_sample_index=$SAMPLE_NUMBER

DistanceGAN: python ./discogan_arch/gan_bound_per_sample_distancegan.py --task_name=$DATASET_NAME --pretrained_generator_A_path='./models/model_gen_A-10' --pretrained_generator_B_path='./models/model_gen_B-10' --pretrained_discriminator_A_path='./models/model_dis_A-10' --pretrained_discriminator_B_path='./models/model_dis_B-10' --one_sample_index=$SAMPLE_NUMBER

Options

Additional options can be found in ./discogan_arch/discogan_based_options/options.py

For specific configuration see DistanceGAN and DiscoGAN

Reference

If you found this code useful, please cite the following paper:

@inproceedings{Benaim2018EstimatingTS,
  title={Estimating the Success of Unsupervised Image to Image Translation},
  author={Sagie Benaim and Tomer Galanti and Lior Wolf},
  booktitle={ECCV},
  year={2018}
}

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant ERC CoG 725974).

About

Pytorch implementation of "Estimating the Success of Unsupervised Image to Image Translation" ECCV 2018

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published