Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix random polynomial bias #37118

Merged
merged 23 commits into from
Mar 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 12 additions & 12 deletions src/sage/crypto/lattice.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,10 +112,10 @@ def gen_lattice(type='modular', n=4, m=8, q=11, seed=None,
[ 0 11 0 0 0 0 0 0]
[ 0 0 11 0 0 0 0 0]
[ 0 0 0 11 0 0 0 0]
[-2 -3 -3 4 1 0 0 0]
[ 4 -2 -3 -3 0 1 0 0]
[-3 4 -2 -3 0 0 1 0]
[-3 -3 4 -2 0 0 0 1]
[-3 -3 -2 4 1 0 0 0]
[ 4 -3 -3 -2 0 1 0 0]
[-2 4 -3 -3 0 0 1 0]
[-3 -2 4 -3 0 0 0 1]

Ideal bases also work with polynomials::

Expand All @@ -125,10 +125,10 @@ def gen_lattice(type='modular', n=4, m=8, q=11, seed=None,
[ 0 11 0 0 0 0 0 0]
[ 0 0 11 0 0 0 0 0]
[ 0 0 0 11 0 0 0 0]
[ 1 4 -3 3 1 0 0 0]
[ 3 1 4 -3 0 1 0 0]
[-3 3 1 4 0 0 1 0]
[ 4 -3 3 1 0 0 0 1]
[-3 4 1 4 1 0 0 0]
[ 4 -3 4 1 0 1 0 0]
[ 1 4 -3 4 0 0 1 0]
[ 4 1 4 -3 0 0 0 1]

Cyclotomic bases with n=2^k are SWIFFT bases::

Expand All @@ -137,10 +137,10 @@ def gen_lattice(type='modular', n=4, m=8, q=11, seed=None,
[ 0 11 0 0 0 0 0 0]
[ 0 0 11 0 0 0 0 0]
[ 0 0 0 11 0 0 0 0]
[-2 -3 -3 4 1 0 0 0]
[-4 -2 -3 -3 0 1 0 0]
[ 3 -4 -2 -3 0 0 1 0]
[ 3 3 -4 -2 0 0 0 1]
[-3 -3 -2 4 1 0 0 0]
[-4 -3 -3 -2 0 1 0 0]
[ 2 -4 -3 -3 0 0 1 0]
[ 3 2 -4 -3 0 0 0 1]

Dual modular bases are related to Regev's famous public-key
encryption [Reg2005]_::
Expand Down
4 changes: 2 additions & 2 deletions src/sage/crypto/lwe.py
Original file line number Diff line number Diff line change
Expand Up @@ -670,7 +670,7 @@ def __init__(self, ringlwe):
sage: lwe = RingLWEConverter(RingLWE(16, 257, D, secret_dist='uniform'))
sage: set_random_seed(1337)
sage: lwe()
((32, 216, 3, 125, 58, 197, 171, 43), ...)
((171, 197, 58, 125, 3, 216, 32, 130), ...)
"""
self.ringlwe = ringlwe
self._i = 0
Expand All @@ -686,7 +686,7 @@ def __call__(self):
sage: lwe = RingLWEConverter(RingLWE(16, 257, D, secret_dist='uniform'))
sage: set_random_seed(1337)
sage: lwe()
((32, 216, 3, 125, 58, 197, 171, 43), ...)
((171, 197, 58, 125, 3, 216, 32, 130), ...)
"""
R_q = self.ringlwe.R_q

Expand Down
28 changes: 14 additions & 14 deletions src/sage/misc/randstate.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -56,22 +56,22 @@ results of these random number generators reproducible. ::

sage: set_random_seed(0)
sage: print(rtest())
(303, -0.266166246380421, 1/6, (1,2), [ 0, 1, 1, 0, 0 ], 265625921, 79302, 0.2450652680687958)
(303, -0.266166246380421, 1/2*x^2 - 1/95*x - 1/2, (1,3), [ 1, 0, 0, 1, 1 ], 265625921, 5842, 0.9661911734708414)
sage: set_random_seed(1)
sage: print(rtest())
(978, 0.0557699430711638, -1/8*x^2 - 1/2*x + 1/2, (1,2,3), [ 1, 0, 0, 0, 1 ], 807447831, 23865, 0.6170498912488264)
(978, 0.0557699430711638, -3*x^2 - 1/12, (1,2), [ 0, 0, 1, 1, 0 ], 807447831, 29982, 0.8335077654199736)
sage: set_random_seed(2)
sage: print(rtest())
(207, -0.0141049486533456, 0, (1,3)(4,5), [ 1, 0, 1, 1, 1 ], 1642898426, 16190, 0.9343331114872127)
(207, -0.0141049486533456, 4*x^2 + 1/2, (1,2)(4,5), [ 1, 0, 0, 1, 1 ], 1642898426, 41662, 0.19982565117278328)
sage: set_random_seed(0)
sage: print(rtest())
(303, -0.266166246380421, 1/6, (1,2), [ 0, 1, 1, 0, 0 ], 265625921, 79302, 0.2450652680687958)
(303, -0.266166246380421, 1/2*x^2 - 1/95*x - 1/2, (1,3), [ 1, 0, 0, 1, 1 ], 265625921, 5842, 0.9661911734708414)
sage: set_random_seed(1)
sage: print(rtest())
(978, 0.0557699430711638, -1/8*x^2 - 1/2*x + 1/2, (1,2,3), [ 1, 0, 0, 0, 1 ], 807447831, 23865, 0.6170498912488264)
(978, 0.0557699430711638, -3*x^2 - 1/12, (1,2), [ 0, 0, 1, 1, 0 ], 807447831, 29982, 0.8335077654199736)
sage: set_random_seed(2)
sage: print(rtest())
(207, -0.0141049486533456, 0, (1,3)(4,5), [ 1, 0, 1, 1, 1 ], 1642898426, 16190, 0.9343331114872127)
(207, -0.0141049486533456, 4*x^2 + 1/2, (1,2)(4,5), [ 1, 0, 0, 1, 1 ], 1642898426, 41662, 0.19982565117278328)

Once we've set the random number seed, we can check what seed was used.
(This is not the current random number state; it does not change when
Expand All @@ -81,7 +81,7 @@ random numbers are generated.) ::
sage: initial_seed()
12345
sage: print(rtest())
(720, -0.612180244315804, 0, (1,3), [ 1, 0, 1, 1, 0 ], 1911581957, 65175, 0.8043027951758298)
(720, -0.612180244315804, x^2 - x, (1,2,3), [ 1, 0, 0, 0, 1 ], 1911581957, 27093, 0.9205331599518184)
sage: initial_seed()
12345

Expand Down Expand Up @@ -216,19 +216,19 @@ that you get without intervening ``with seed``. ::

sage: set_random_seed(0)
sage: r1 = rtest(); print(r1)
(303, -0.266166246380421, 1/6, (1,2), [ 0, 1, 1, 0, 0 ], 265625921, 79302, 0.2450652680687958)
(303, -0.266166246380421, 1/2*x^2 - 1/95*x - 1/2, (1,3), [ 1, 0, 0, 1, 1 ], 265625921, 5842, 0.9661911734708414)
sage: r2 = rtest(); print(r2)
(443, 0.185001351421963, -2, (1,3), [ 0, 0, 1, 1, 0 ], 53231108, 8171, 0.28363811590618193)
(105, 0.642309615982449, -x^2 - x - 6, (1,3)(4,5), [ 1, 0, 0, 0, 1 ], 53231108, 77132, 0.001767155077382232)

We get slightly different results with an intervening ``with seed``. ::

sage: set_random_seed(0)
sage: r1 == rtest()
True
sage: with seed(1): rtest()
(978, 0.0557699430711638, -1/8*x^2 - 1/2*x + 1/2, (1,2,3), [ 1, 0, 0, 0, 1 ], 807447831, 23865, 0.6170498912488264)
(978, 0.0557699430711638, -3*x^2 - 1/12, (1,2), [ 0, 0, 1, 1, 0 ], 807447831, 29982, 0.8335077654199736)
sage: r2m = rtest(); r2m
(443, 0.185001351421963, -2, (1,3), [ 0, 0, 1, 1, 0 ], 53231108, 51295, 0.28363811590618193)
(105, 0.642309615982449, -x^2 - x - 6, (1,3)(4,5), [ 1, 0, 0, 0, 1 ], 53231108, 40267, 0.001767155077382232)
sage: r2m == r2
False

Expand All @@ -245,8 +245,8 @@ case, as we see in this example::
sage: with seed(1):
....: print(rtest())
....: print(rtest())
(978, 0.0557699430711638, -1/8*x^2 - 1/2*x + 1/2, (1,2,3), [ 1, 0, 0, 0, 1 ], 807447831, 23865, 0.6170498912488264)
(181, 0.607995392046754, -x + 1/2, (2,3)(4,5), [ 1, 0, 0, 1, 1 ], 1010791326, 9693, 0.5691716786307407)
(978, 0.0557699430711638, -3*x^2 - 1/12, (1,2), [ 0, 0, 1, 1, 0 ], 807447831, 29982, 0.8335077654199736)
(138, -0.0404945051288503, 2*x - 24, (1,2,3), [ 1, 1, 0, 1, 1 ], 1010791326, 91360, 0.0033332230808060803)
sage: r2m == rtest()
True

Expand All @@ -258,7 +258,7 @@ NTL random numbers were generated inside the ``with seed``.
True
sage: with seed(1):
....: rtest()
(978, 0.0557699430711638, -1/8*x^2 - 1/2*x + 1/2, (1,2,3), [ 1, 0, 0, 0, 1 ], 807447831, 23865, 0.6170498912488264)
(978, 0.0557699430711638, -3*x^2 - 1/12, (1,2), [ 0, 0, 1, 1, 0 ], 807447831, 29982, 0.8335077654199736)
sage: r2m == rtest()
True

Expand Down
Loading
Loading