-
-
Notifications
You must be signed in to change notification settings - Fork 482
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Trac #30744: Symplectic derivation Lie algebra
We implement it following https://arxiv.org/abs/2006.06064 URL: https://trac.sagemath.org/30744 Reported by: tscrim Ticket author(s): Travis Scrimshaw Reviewer(s): Frédéric Chapoton
- Loading branch information
Showing
6 changed files
with
298 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,4 @@ | ||
tarball=configure-VERSION.tar.gz | ||
sha1=13ac5ae7fa66fb0f1dc4fb09b4c5c6d72918a3ef | ||
md5=67b20028087b39225833e6a7fe2553fe | ||
cksum=832894188 | ||
sha1=528310af4586231728c4fe85e13cc49eea25d599 | ||
md5=7ca3e7d0c98717f07e5c6433408be36f | ||
cksum=979147339 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
8e72e1b9c9b3e9b84c29245666493e0a1bd48cab | ||
2d7ea2337b8c1c94b1311c73459d1a4f37ae168f |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
285 changes: 285 additions & 0 deletions
285
src/sage/algebras/lie_algebras/symplectic_derivation.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,285 @@ | ||
# -*- coding: utf-8 -*- | ||
r""" | ||
Symplectic Derivation Lie Algebras | ||
AUTHORS: | ||
- Travis Scrimshaw (2020-10): Initial version | ||
""" | ||
|
||
#***************************************************************************** | ||
# Copyright (C) 2020 Travis Scrimshaw <tcscrims at gmail.com> | ||
# | ||
# This program is free software: you can redistribute it and/or modify | ||
# it under the terms of the GNU General Public License as published by | ||
# the Free Software Foundation, either version 2 of the License, or | ||
# (at your option) any later version. | ||
# https://www.gnu.org/licenses/ | ||
#***************************************************************************** | ||
|
||
from sage.categories.lie_algebras import LieAlgebras | ||
from sage.sets.family import Family | ||
from sage.sets.disjoint_union_enumerated_sets import DisjointUnionEnumeratedSets | ||
from sage.structure.indexed_generators import IndexedGenerators | ||
from sage.algebras.lie_algebras.lie_algebra_element import LieAlgebraElement | ||
from sage.algebras.lie_algebras.lie_algebra import InfinitelyGeneratedLieAlgebra | ||
from sage.sets.non_negative_integers import NonNegativeIntegers | ||
from sage.combinat.partition import _Partitions, Partitions | ||
|
||
class SymplecticDerivationLieAlgebra(InfinitelyGeneratedLieAlgebra, IndexedGenerators): | ||
r""" | ||
The symplectic derivation Lie algebra. | ||
Fix a `g \geq 4` and let `R` be a commutative ring. Let `H = R^{2g}` | ||
be equiped with a symplectic form `\mu` with the basis | ||
`a_1, \ldots, a_g, b_1, \ldots, b_g` such that | ||
.. MATH:: | ||
\mu(a_i, a_j) = \mu(b_i, b_j) = 0, | ||
\qquad\qquad | ||
\mu(a_i, b_j) = -\mu(b_j, a_i) = \delta_{ij}, | ||
for all `i, j`. The *symplectic derivation Lie algebra* is the Lie | ||
algebra | ||
.. MATH:: | ||
\mathfrak{c}_g := \bigoplus_{w \geq 0} S^{w+2} H | ||
with the Lie bracket on basis elements | ||
.. MATH:: | ||
[x_1 \cdots x_{m+2}, y_1 \cdots y_{n+2}] = | ||
\sum_{i,j} \mu(x_i, y_j) x_1 \cdots \widehat{x}_i \cdots x_{m+2} | ||
\cdot y_1 \cdots \widehat{y}_j \cdots y_{n+2}, | ||
where `\widehat{z}` denotes that factor is missing. When `R = \QQ`, this | ||
corresponds to the classical Poisson bracket on `C^{\infty}(\RR^{2g})` | ||
restricted to polynomials with coefficients in `\QQ`. | ||
EXAMPLES:: | ||
sage: L = lie_algebras.SymplecticDerivation(QQ, 5) | ||
sage: elts = L.some_elements() | ||
sage: list(elts) | ||
[a1*a2, b1*b3, a1*a1*a2, b3*b4, | ||
a1*a4*b3, a1*a2 - 1/2*a1*a2*a2*a5 + a1*a1*a2*b1*b4] | ||
sage: [[elts[i].bracket(elts[j]) for i in range(len(elts))] | ||
....: for j in range(len(elts))] | ||
[[0, -a2*b3, 0, 0, 0, -a1*a1*a2*a2*b4], | ||
[a2*b3, 0, 2*a1*a2*b3, 0, a4*b3*b3, a2*b3 - 1/2*a2*a2*a5*b3 + 2*a1*a2*b1*b3*b4], | ||
[0, -2*a1*a2*b3, 0, 0, 0, -2*a1*a1*a1*a2*a2*b4], | ||
[0, 0, 0, 0, a1*b3*b3, 0], | ||
[0, -a4*b3*b3, 0, -a1*b3*b3, 0, -a1*a1*a1*a2*b1*b3 - a1*a1*a2*a4*b3*b4], | ||
[a1*a1*a2*a2*b4, -a2*b3 + 1/2*a2*a2*a5*b3 - 2*a1*a2*b1*b3*b4, 2*a1*a1*a1*a2*a2*b4, | ||
0, a1*a1*a1*a2*b1*b3 + a1*a1*a2*a4*b3*b4, 0]] | ||
sage: x = L.monomial(Partition([8,8,6,6,4,2,2,1,1,1])); x | ||
a1*a1*a1*a2*a2*a4*b1*b1*b3*b3 | ||
sage: [L[x, elt] for elt in elts] | ||
[-2*a1*a1*a1*a2*a2*a2*a4*b1*b3*b3, | ||
3*a1*a1*a2*a2*a4*b1*b1*b3*b3*b3, | ||
-4*a1*a1*a1*a1*a2*a2*a2*a4*b1*b3*b3, | ||
a1*a1*a1*a2*a2*b1*b1*b3*b3*b3, | ||
-2*a1*a1*a1*a2*a2*a4*a4*b1*b3*b3*b3, | ||
-2*a1*a1*a1*a2*a2*a2*a4*b1*b3*b3 + a1*a1*a1*a2*a2*a2*a2*a4*a5*b1*b3*b3 | ||
+ a1*a1*a1*a1*a1*a2*a2*a2*b1*b1*b1*b3*b3 - a1*a1*a1*a1*a2*a2*a2*a4*b1*b1*b3*b3*b4] | ||
REFERENCES: | ||
- [Harako2020]_ | ||
""" | ||
def __init__(self, R, g): | ||
r""" | ||
Initialize ``self``. | ||
EXAMPLES:: | ||
sage: L = lie_algebras.SymplecticDerivation(QQ, 5) | ||
sage: TestSuite(L).run() | ||
""" | ||
if g < 4: | ||
raise ValueError("g must be at least 4") | ||
cat = LieAlgebras(R).WithBasis().Graded() | ||
self._g = g | ||
d = Family(NonNegativeIntegers(), lambda n: Partitions(n, min_length=2, max_part=2*g)) | ||
indices = DisjointUnionEnumeratedSets(d) | ||
InfinitelyGeneratedLieAlgebra.__init__(self, R, index_set=indices, category=cat) | ||
IndexedGenerators.__init__(self, indices, sorting_key=self._basis_key) | ||
|
||
def _basis_key(self, x): | ||
r""" | ||
Return the key used to compare two basis element indices. | ||
EXAMPLES:: | ||
sage: L = lie_algebras.SymplecticDerivation(QQ, 5) | ||
sage: L._basis_key( [7, 5, 2, 1] ) | ||
(4, [7, 5, 2, 1]) | ||
sage: x = L.an_element(); x | ||
a1*a2 - 1/2*a1*a2*a2*a5 + a1*a1*a2*b1*b4 | ||
sage: sorted(map(L._basis_key, x.support())) | ||
[(2, [2, 1]), (4, [5, 2, 2, 1]), (5, [9, 6, 2, 1, 1])] | ||
""" | ||
return (len(x), x) | ||
|
||
def _repr_term(self, m): | ||
r""" | ||
Return a string representation of the term indexed by ``m``. | ||
EXAMPLES:: | ||
sage: L = lie_algebras.SymplecticDerivation(QQ, 5) | ||
sage: L._repr_term([7, 5, 2, 1]) | ||
'a1*a2*a5*b2' | ||
""" | ||
g = self._g | ||
def label(i): | ||
return "a{}".format(i) if i <= g else "b{}".format(i-g) | ||
return "*".join(label(i) for i in reversed(m)) | ||
|
||
def _latex_term(self, m): | ||
r""" | ||
Return a `\LaTeX` representation of the term indexed by ``m``. | ||
EXAMPLES:: | ||
sage: L = lie_algebras.SymplecticDerivation(QQ, 5) | ||
sage: L._latex_term([7, 5, 2, 1]) | ||
'a_{1} a_{2} a_{5} b_{2}' | ||
""" | ||
g = self._g | ||
def label(i): | ||
return "a_{{{}}}".format(i) if i <= g else "b_{{{}}}".format(i-g) | ||
return " ".join(label(i) for i in reversed(m)) | ||
|
||
def _unicode_art_term(self, m): | ||
r""" | ||
Return a unicode art representation of the term indexed by ``m``. | ||
EXAMPLES:: | ||
sage: L = lie_algebras.SymplecticDerivation(QQ, 5) | ||
sage: L._unicode_art_term([7, 5, 2, 1]) | ||
a₁·a₂·a₅·b₂ | ||
""" | ||
from sage.typeset.unicode_art import unicode_art, unicode_subscript | ||
g = self._g | ||
def label(i): | ||
return "a{}".format(unicode_subscript(i)) if i <= g else "b{}".format(unicode_subscript(i-g)) | ||
return unicode_art("·".join(label(i) for i in reversed(m))) | ||
|
||
def _repr_(self): | ||
""" | ||
Return a string representation of ``self``. | ||
EXAMPLES:: | ||
sage: lie_algebras.SymplecticDerivation(QQ, 5) | ||
Symplectic derivation Lie algebra of rank 5 over Rational Field | ||
""" | ||
return "Symplectic derivation Lie algebra of rank {} over {}".format(self._g, self.base_ring()) | ||
|
||
def degree_on_basis(self, x): | ||
r""" | ||
Return the degree of the basis element indexed by ``x``. | ||
EXAMPLES:: | ||
sage: L = lie_algebras.SymplecticDerivation(QQ, 5) | ||
sage: L.degree_on_basis([5,2,1]) | ||
1 | ||
sage: L.degree_on_basis([1,1]) | ||
0 | ||
sage: elt = L.monomial(Partition([5,5,2,1])) + 3*L.monomial(Partition([3,3,2,1])) | ||
sage: elt.degree() | ||
2 | ||
""" | ||
return len(x) - 2 | ||
|
||
def bracket_on_basis(self, x, y): | ||
r""" | ||
Return the bracket of basis elements indexed by ``x`` and ``y``, | ||
where ``i < j``. | ||
EXAMPLES:: | ||
sage: L = lie_algebras.SymplecticDerivation(QQ, 5) | ||
sage: L.bracket_on_basis([5,2,1], [5,1,1]) | ||
0 | ||
sage: L.bracket_on_basis([6,1], [3,1,1]) | ||
-2*a1*a1*a3 | ||
sage: L.bracket_on_basis([9,2,1], [4,1,1]) | ||
-a1*a1*a1*a2 | ||
sage: L.bracket_on_basis([5,5,2], [6,1,1]) | ||
0 | ||
sage: L.bracket_on_basis([5,5,5], [10,3]) | ||
3*a3*a5*a5 | ||
sage: L.bracket_on_basis([10,10,10], [5,3]) | ||
-3*a3*b5*b5 | ||
""" | ||
g = self._g | ||
ret = {} | ||
one = self.base_ring().one() | ||
for i,xi in enumerate(x): | ||
for j,yj in enumerate(y): | ||
# The symplectic form will be 0 | ||
if (xi <= g and yj <= g) or (xi > g and yj > g): | ||
continue | ||
if xi <= g and yj > g: | ||
if xi != yj - g: | ||
continue | ||
m = _Partitions(sorted(x[:i] + x[i+1:] + y[:j] + y[j+1:], reverse=True)) | ||
if m in ret: | ||
ret[m] += one | ||
else: | ||
ret[m] = one | ||
else: # if ci > g and yj <= g: | ||
if xi - g != yj: | ||
continue | ||
m = _Partitions(sorted(x[:i] + x[i+1:] + y[:j] + y[j+1:], reverse=True)) | ||
if m in ret: | ||
ret[m] -= one | ||
else: | ||
ret[m] = -one | ||
return self._from_dict(ret, remove_zeros=True) | ||
|
||
def _an_element_(self): | ||
r""" | ||
Return an element of ``self``. | ||
EXAMPLES:: | ||
sage: L = lie_algebras.SymplecticDerivation(QQ, 5) | ||
sage: L.an_element() | ||
a1*a2 - 1/2*a1*a2*a2*a5 + a1*a1*a2*b1*b4 | ||
""" | ||
d = self.monomial | ||
return ( | ||
d( _Partitions([2,1]) ) | ||
- self.base_ring().an_element() * d( _Partitions([5,2,2,1]) ) | ||
+ d( _Partitions([2*self._g-1, self._g+1, 2, 1, 1]) ) | ||
) | ||
|
||
def some_elements(self): | ||
r""" | ||
Return some elements of ``self``. | ||
EXAMPLES:: | ||
sage: L = lie_algebras.SymplecticDerivation(QQ, 5) | ||
sage: L.some_elements() | ||
[a1*a2, b1*b3, a1*a1*a2, b3*b4, a1*a4*b3, | ||
a1*a2 - 1/2*a1*a2*a2*a5 + a1*a1*a2*b1*b4] | ||
""" | ||
d = self.monomial | ||
g = self._g | ||
return [d( _Partitions([2,1]) ), d( _Partitions([g+3,g+1]) ), d( _Partitions([2,1,1])), | ||
d( _Partitions([2*g-1,2*g-2]) ), d( _Partitions([2*g-2,g-1,1]) ), | ||
self.an_element()] | ||
|
||
class Element(LieAlgebraElement): | ||
pass | ||
|