Skip to content

ryokugyu/dvc_tutorial

Repository files navigation

DVC Tutorial

Machine Learning projects deals with both the data and code. DVC is a tool which provides data versioning. For more information on DVC visit here.

The main purpose of this tutorial is to get a brief overview of the DVC and how it is solving modern machine learning project issues.

Contents of the repository

Follow these steps:

Clone this repository

git clone https://github.com/ryokugyu/dvc_tutorial.git

After cloning the repository, change directory to dvc_tutorial.

Initialize DVC repository

dvc init

After initializing the DVC repository. Let's pull the data into our machine locally:

dvc push

Now we have both the data and code present locally in our machine. First, split the dataset into 70-30% ratio.

Splitting the dataset:

dvc run -d data/mnist_train.csv -d code/split_test_train.py -d code/conf.py -o data/X_train.npy -o data/Y_train.npy -o data/X_val.npy -o data/Y_val.npy python code/split_test_train.py 0.33 2
  • Now, lets create a folder named model.

mkdir model

compiling and training the model. also validating the performance.

storing the model matrix also

dvc run -v -d  data/X_train.npy -d data/Y_train.npy -d data/X_val.npy -d data/Y_val.npy -d code/conf.py -d code/model_train.py -o model/model.json -o model/model.h5 python code/model_train.py 1 256

loading the model and testing the model performance with exxternal testing dataset

dvc run -d data/mnist_train.csv -d code/conf.py -d code/model_test.py -M data/eval.txt -f Dvcfile python code/model_test.py

DVC metric feature

dvc metrics show

About

Get Started: MNIST tutorial for DVC

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages