Skip to content

Commit

Permalink
Built site for gh-pages
Browse files Browse the repository at this point in the history
  • Loading branch information
Quarto GHA Workflow Runner committed Dec 11, 2023
1 parent 8b8c724 commit 328edeb
Show file tree
Hide file tree
Showing 25 changed files with 15,196 additions and 159 deletions.
2 changes: 1 addition & 1 deletion .nojekyll
Original file line number Diff line number Diff line change
@@ -1 +1 @@
85790614
228de69d
23 changes: 22 additions & 1 deletion search.json
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,27 @@
"href": "zero_dl_up.html",
"title": "Quick EDA about BSL with 0 speeds Download/Upload",
"section": "",
"text": "EDA to store quick notes about locations services with 0 uploads and 0 downloads.\nThe data used to provide most of the analysis was done with this 2 SQL queries. They were saved and stored in data/\n\n\nCode\nselect \n state_abbr,\n brand_name,\n count(brand_name)\nfrom \n staging.june23\nwhere\n(max_advertised_download_speed = 0 AND\n max_advertised_upload_speed = 0) = true\ngroup by brand_name, state_abbr, technology;\n\n-- first get all 0/0 then get all the non 0/0\n\nselect \n state_abbr,\n brand_name,\n count(brand_name)\nfrom \n staging.june23\nwhere\n(max_advertised_download_speed = 0 AND\n max_advertised_upload_speed = 0) = false\ngroup by brand_name, state_abbr, technology;\n\n\n\n\nCode\nzero_loc <- read.csv(\"data/zero_dl_up.csv\")\nnot_zero <- read.csv(\"data/not_zero_dl.csv\")\n\n\nSummary by technologies:\n\n\nCode\nagg_tech <- function(dat) {\n aggregate(cbind(count = dat$count),\n list(technology = dat$technology),\n sum)\n}\n\nagg <- agg_tech(zero_loc) \nagg_not <- agg_tech(not_zero)\ntechnology <- merge(agg, agg_not, by.x = \"technology\", by.y = \"technology\", all.x = TRUE, all.y = TRUE) \ncolnames(technology) <- c(\"technology\", \"cnt_zero_dl\", \"cnt_non_zero\")\ntechnology$rate_zero <- round(technology$cnt_zero_dl / (technology$cnt_zero_dl + technology$cnt_non_zero), 4)\ntechnology\n\n\n technology cnt_zero_dl cnt_non_zero rate_zero\n1 0 29 4060 0.0071\n2 10 17271298 40567062 0.2986\n3 40 24721 102795944 0.0002\n4 50 22942 62521744 0.0004\n5 60 36678 339792513 0.0001\n6 61 NA 114863490 NA\n7 70 2201042 45586988 0.0461\n8 71 38540018 95278280 0.2880\n9 72 72535 8554415 0.0084\n\n\n\n\nCode\nagg <- aggregate(cbind(count = zero_loc$count), \n list(brand_name = zero_loc$brand_name),\n FUN = sum)\nagg_not <- aggregate(cbind(count = not_zero$count), \n list(brand_name = not_zero$brand_name),\n FUN = sum)\nrate_zero <- merge(agg, agg_not, by.x = \"brand_name\", by.y = \"brand_name\", all.x = TRUE) \ncolnames(rate_zero) <- c(\"brand_name\", \"cnt_zero_dl\", \"cnt_non_zero\")\nrate_zero$rate_zero <- rate_zero$cnt_zero_dl / (rate_zero$cnt_zero_dl + rate_zero$cnt_non_zero)\n\nrate_zero[order(rate_zero$cnt_zero_dl, decreasing = TRUE),] |> head(n = 20)\n\n\n brand_name cnt_zero_dl cnt_non_zero\n395 T-Mobile US 37606165 39995310\n28 AT&T Inc 4608318 36228564\n449 Verizon 4242079 9906930\n83 CenturyLink 3739262 8454587\n61 Brightspeed 2798237 1122730\n435 TWN Communications 1258827 15014\n108 Consolidated Communications 529512 547949\n88 Choice Wireless 457196 126881\n343 Rise Broadband 383897 4711833\n95 Claro 278907 1035234\n102 Comcell 253851 35380\n515 Ziply Fiber 222424 1081237\n453 VTel Wireless, Inc. 130430 143176\n174 FRONTIER 76159 7593836\n330 Plateau Telecommunications Incorporated 75939 37711\n455 W A T C H TV 64002 1363903\n447 Valor Telecommunications of Texas, LP 62524 523687\n208 Hometown Cable 56214 5035\n20 altafiber Extended Territories 54272 113524\n13 ALASKA COMMUNICATIONS 52802 76103\n rate_zero\n395 0.484606317\n28 0.112846960\n449 0.299814567\n83 0.306651493\n61 0.713659921\n435 0.988213600\n108 0.491444238\n88 0.782766656\n343 0.075336998\n95 0.212235217\n102 0.877675630\n515 0.170614907\n453 0.476707382\n174 0.009929472\n330 0.668183018\n455 0.044822310\n447 0.106657842\n208 0.917794576\n20 0.323440368\n13 0.409619487\n\n\nI am bothered by those results\n\n\nCode\nst_agg <- aggregate(cbind(count = zero_loc$count),\n list(state_abbr = zero_loc$state_abbr),\n sum) \n\nst_agg[order(st_agg$count, decreasing = TRUE), ]\n\n\n state_abbr count\n46 TX 4941001\n5 CA 3646886\n40 PA 2844345\n10 FL 2770745\n29 NC 2695309\n36 NY 2681806\n37 OH 2315645\n4 AZ 1937060\n24 MI 1882225\n48 VA 1742659\n16 IL 1577140\n50 WA 1525201\n33 NJ 1517378\n11 GA 1513840\n21 MA 1366389\n45 TN 1356454\n17 IN 1355637\n25 MN 1207171\n2 AL 1092723\n51 WI 1076904\n6 CO 1063596\n34 NM 995923\n22 MD 986789\n43 SC 935817\n20 LA 908055\n39 OR 854570\n14 IA 853064\n19 KY 850097\n26 MO 846778\n38 OK 837809\n3 AR 790574\n27 MS 661016\n35 NV 628314\n18 KS 600306\n47 UT 537778\n23 ME 534610\n7 CT 462478\n15 ID 409825\n31 NE 407737\n32 NH 394023\n49 VT 376123\n28 MT 367473\n41 PR 279108\n52 WV 275874\n44 SD 236459\n9 DE 228395\n30 ND 196069\n53 WY 180125\n42 RI 177713\n1 AK 101385\n13 HI 100408\n8 DC 42776\n12 GU 1678"
"text": "Code\ntable_with_options <- function(x){DT::datatable(x, rownames = FALSE,\n extensions = 'Buttons', \n options = list(\n dom = 'Blfrtip',\n buttons = list('copy', 'print', list(\n extend = 'collection',\n buttons = c('csv', 'excel'),\n text = 'Download')\n )\n )\n )}\n# very lazish function, col should be a string \nagg_count <- function(dat, col) {\n agg <- aggregate(cbind(count = dat$count),\n list(name_col = dat[[col]]),\n sum)\n colnames(agg) <- c(col, \"count\")\n return(agg)\n}\nThe goals of this page is storing a quick EDA about broadband services locations with 0 MBps uploads and 0 MBps downloads. To be concise we are going to call them 0/0 speeds.\nWe have counted every services that have been declared with 0/0 speeds and associated with their States, ISP and technology. To clarify that does not meen a location have 0/0 speeds only but that one ISP x technology is providing this kind of service in this location.\nThe data used to provide most of the analysis was done with this 2 SQL queries. They were saved and stored in data/\nCode\nSELECT \n state_abbr,\n brand_name,\n count(brand_name)\nFROM\n staging.june23\nWHERE\n(max_advertised_download_speed = 0 AND\n max_advertised_upload_speed = 0) = true\nGROUP BY brand_name, state_abbr, technology;\n\n-- first get all 0/0 then get all the non 0/0\n\nSELECT \n state_abbr,\n brand_name,\n count(brand_name)\nFROM \n staging.june23\nWHERE\n(max_advertised_download_speed = 0 AND\n max_advertised_upload_speed = 0) = false\nGROUP BY brand_name, state_abbr, technology;\nCode\nzero_loc <- read.csv(\"data/zero_dl_up.csv\")\nnot_zero <- read.csv(\"data/not_zero_dl.csv\")"
},
{
"objectID": "zero_dl_up.html#summary-by-technologies",
"href": "zero_dl_up.html#summary-by-technologies",
"title": "Quick EDA about BSL with 0 speeds Download/Upload",
"section": "Summary by technologies:",
"text": "Summary by technologies:\n\n\nCode\nagg <- agg_count(zero_loc, \"technology\") \nagg_not <- agg_count(not_zero, \"technology\")\n\ntechnology <- merge(agg, agg_not, by.x = \"technology\", \n by.y = \"technology\", all.x = TRUE, all.y = TRUE) \ncolnames(technology) <- c(\"technology\", \"cnt_zero_dl\", \"cnt_non_zero\")\ntechnology$rate_zero <- round(technology$cnt_zero_dl / \n (technology$cnt_zero_dl + technology$cnt_non_zero), 4)\n\ntable_with_options(technology)\n\n\n\n\n\n\n\n\nWe do not mind too much 70 (Unlicensed Terrestrial Fixed Wireless) because we are filtering it out but we are keeping 71 (Licensed Terrestrial Fixed Wireless) , 72 (Licensed-by-Rule Terrestrial Fixed Wireless)and 10 (Copper Wire).\nTo take that into account I will filter out the Unlicensed Terrestrial Fixed Wireless"
},
{
"objectID": "zero_dl_up.html#summary-by-isp",
"href": "zero_dl_up.html#summary-by-isp",
"title": "Quick EDA about BSL with 0 speeds Download/Upload",
"section": "Summary by ISP",
"text": "Summary by ISP\n\n\nCode\nzero_loc <- zero_loc[which(zero_loc$technology != 70), ]\nnot_zero <- not_zero[which(not_zero$technology != 70), ]\n\nagg <- agg_count(zero_loc, \"brand_name\")\nagg_not <- agg_count(not_zero, \"brand_name\")\n\nrate_zero <- merge(agg, agg_not, \n by.x = \"brand_name\", by.y = \"brand_name\"\n , all.x = TRUE) \n\ncolnames(rate_zero) <- c(\"brand_name\", \"cnt_zero_dl\", \"cnt_non_zero\")\nrate_zero$rate_zero <- round(rate_zero$cnt_zero_dl /\n (rate_zero$cnt_zero_dl + rate_zero$cnt_non_zero),\n 4)\n\ntable_with_options(rate_zero[\n order(rate_zero$cnt_zero_dl, decreasing = TRUE),])\n\n\n\n\n\n\n\n\n\n402 ISPs are declaring services with 0/0 MBips (We have 2902 ISPs registered in FCC NBM)"
},
{
"objectID": "zero_dl_up.html#sumamry-by-states",
"href": "zero_dl_up.html#sumamry-by-states",
"title": "Quick EDA about BSL with 0 speeds Download/Upload",
"section": "Sumamry by States",
"text": "Sumamry by States\n\n\nCode\nst_agg <- aggregate(cbind(count = zero_loc$count),\n list(state_abbr = zero_loc$state_abbr),\n sum) \n\nst_agg[order(st_agg$count, decreasing = TRUE), ]\n\n\n state_abbr count\n46 TX 4386312\n5 CA 3634408\n40 PA 2828074\n10 FL 2770745\n29 NC 2695144\n36 NY 2681628\n37 OH 2239266\n24 MI 1871399\n48 VA 1734018\n33 NJ 1517378\n11 GA 1513818\n16 IL 1498313\n50 WA 1464164\n21 MA 1366389\n45 TN 1352542\n4 AZ 1318026\n25 MN 1206570\n17 IN 1097195\n2 AL 1085451\n51 WI 1070819\n6 CO 1029544\n22 MD 986784\n43 SC 935805\n20 LA 906797\n39 OR 846556\n14 IA 820711\n34 NM 819808\n26 MO 818771\n38 OK 812718\n19 KY 808691\n3 AR 783883\n27 MS 661013\n35 NV 618826\n18 KS 595722\n23 ME 534541\n47 UT 522833\n7 CT 462477\n31 NE 397298\n32 NH 394023\n49 VT 374912\n28 MT 359156\n15 ID 343850\n41 PR 279108\n52 WV 275714\n44 SD 236435\n9 DE 228395\n30 ND 195666\n42 RI 177713\n53 WY 165209\n13 HI 100408\n1 AK 98741\n8 DC 42776\n12 GU 1678\n\n\n One point of concern is that services with 0/0 speeds could be generated for various reasons. One coulb be"
}
]
1 change: 1 addition & 0 deletions site_libs/crosstalk-1.2.1/css/crosstalk.min.css

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading

0 comments on commit 328edeb

Please sign in to comment.