Skip to content

roxanneluo/Hierarchical-Disparity-Prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Fast Non-local Stereo Matching based on Hierarchical Disparity Prediction

##INSTALL DEPENDENCIES

  1. libpng++
  2. python
  3. g++ (which supports c++0x or c++11. g++-4.8 and above versions will work.)

Install for Ubuntu

Install g++

First, install g++-4.8, for example, by

sudo add-apt-repository ppa:ubuntu-toolchain-r/test
sudo apt-get update
sudo apt-get install gcc-4.8
sudo apt-get install g++-4.8

Then change CXX in makefile to use a suitable g++ version.

Install libpng++

sudo apt-get install libpng++-dev

Install for Mac

brew install libpng

##USAGE

Let $ROOT_DIR be the root directory of this project.

Obtain testdata

cd $ROOT_DIR
wget http://bcmi.sjtu.edu.cn/~luoxuan/iccv2015/testdata_iccv2015.zip
unzip testdata_iccv2015.zip
rm testdata_iccv2015.zip

then the datasets would be saved in folder testdata.

The Simplest Way

First run make all.

  1. For Middlebury datasets like halfsize, fullsize, etc.

  2. To run on a single Testcase,

    python run_single.py Algo Dataset Testcase Tolerance1 [Tolerance2] [Tolerance3]...

    e.g., python run_single.py Algo halfsize Aloe 1 2.

    Arguments:

    • Algo.bin: the name of the algorithm. Replace Algo with mst, st, rt or dp_mst, dp_st, dp_rt
    • Dataset: the index for the dataset and it is used to switch which GMM model to use. Here halfsize is 0 and fullsize is 1.
    • Testcase: eg., Aloe, Baby1, ... To run on a single testcase,
    • Tolerance*[int]: Note that the OutputDisparity = ComputedDisparity * Scale. |OutputDisparity - GNDDisparity| >= Scale * Tolence is regarded erroneous.

    Outputs:

    • results/Dataset/Testcase_left_Algo.pgm: Left output disparity map.

    • results/Dataset/err_Tolerance*_Testcase_left_Algo.ppm: Error Map for each Tolerance. Erroneous pixels are shown in red if they are closer than gnd and in green if they are farther than gnd.

    • in stdout: error >= Tolerance*: CorrectNumber TotalNumberOfPixels \n error rate: ErrorRate

  3. To run on one or more whole datasets and generate an HTML of all error rates, open super_run_nonocc.py, specify the algorithms you want to compare in ALGORITHMS. You may change the checker and whether to use LAB color space in CHECKER and use_lab. Run

    python -u super_run_nonocc.py Tolerance HTMLPre Dataset1 [Dataset2] ... |tee results/LogFileName,

    e.g., python -u super_run_nonocc.py 1 test halfsize |tee results/Log_test_err_ge_1_halfsize.txt,

    then the HTML file would be saved at results/SuperReport_HTMLPre_err_ge_Tolerance_Dataset1[_Dataset2_...].html and the stdout would be saved at results/LogFileName.

  4. For KITTI, run

python run_all_kitti.py Algo MaxDisparity Scale

e.g., python run_all_kitti.py dp_mst 160 1

  1. For waseda (Low-quality dataset), run

python run_all_waseda.py Algo MaxDisparity Scale

e.g., python run_all_waseda.py Algo 31 8

In the sequel, we give more detailed description of the codes.

Main Tree-based Algorithms and Their DP Versions

We implement 3 tree-based algorithms MST, ST and RT and their DP versions in main/*.cpp

To use them, first make the them by

make all.

You can use make main if you just want to make *.cpp in main folder. Then the executable would be made in folder bin with suffix .bin.

To run them,

./Algo.bin LeftInput.ppm RightInput.ppm MaxDisparity [Scale] [LeftOutput.pgm] [Dataset] [UseLab]

e.g., ./dp_mst.bin testdata/halfsize/Aloe/left.ppm testdata/halfsize/Aloe/right.ppm 135 2 results/halfsize/Aloe_left_dp_mst.pgm 0 0.

  • UseLab is 1 if you want to use LAB color space in defining the matching cost and edge weights, and is 0 otherwise

Dataset would be neglected if you run mst.out or st.out or rt.out, but it has to be provided if you want to specify use_lab.

Default values for the optional arguments:

  • Scale: 256/MaxDisparity
  • LeftOutput.pgm: default_left.pgm
  • Dataset: 1 (<=> fullsize)
  • UseLab: 0

Note that the OutputDisparity = ComputedDisparity * Scale.

Checker

To obtain the error rate in the nonoccluded regions, make and run it:

make checker
./bin/checker/checker_nonocc.bin LeftOutput.pgm GNDLeftDisp.pgm GNDRightDisp.pgm Tolerance Scale [ErrMap] [ErrAllRed].

e.g., ./bin/checker/checker_nonocc.bin results/halfsize/Aloe_left_dp_mst.pgm testdata/halfsize/Aloe/displeft.pgm testdata/halfsize/Aloe/dispright.pgm 1 2 results/halfsize/err_1_Aloe_left_dp_mst.ppm.

  • GNDLeftDisp.pgm, GNDRightDisp.pgm: the ground truth disparity map for the left and right images.
  • Tolerance[int]: |OutputDisparity - GNDDisparity| >= Scale * Tolence is regarded erroneous.
  • ErrMap: the filename for the error map. If not specified, the error map is not generated.
  • ErrAllRed[int]: By default, if ErrMap is specified, erroneous pixels are shown in red if they are closer than gnd and in green if they are farther than gnd. Erroneous pixels are all shown in red if ErrAllRed != 0.

Another checker is checker/checker_left_nonocc.cpp, which compute the number of correct pixels and total number of pixels in non-occluded regions. Pixels with disparity > 0 are regarded non-occluded.

Util

Some codes that might be useful are in folder util. Fo example, all GND disparity maps are in form .ppm for fullsize dataset. You can convert them to pgm by using rgb2gray.py. Make codes in util by make util. And check each .py for their specific usage.

Generate Statistical Data for GMM Generation and Other Matlab-related Tests

These codes are in gen_data. Make and run them:

make gen_data
./bin/gen_data/gen_concur_dp_Algo.bin LeftInput.ppm RightInput.ppm MaxDisparity Scale GNDLeftDisparityMap Dataset Algo ConcurFolder SupportFolder

e.g.,

make gen_data
mkdir -p results/stat/ && mkdir -p results/stat/concur_test && mkdir -p results/stat/support_test
./bin/gen_data/gen_concur_dp_mst.bin testdata/halfsize/Aloe/left.ppm testdata/halfsize/Aloe/right.ppm 135 2 testdata/halfsize/Aloe/displeft.pgm halfsize mst results/stat/halfsize/concur_test resutls/stat/halfsize/support_test

Outputs:

  • ConcurFolder/concur_Dataset_Algo_l,l-1.txt: the concurrence matrix, i.e., # of concurrence for D_l in smaller layer l and D_{l-1} in larger layer l-1,
  • SupportFolder/support_Dataset_Algo_l.txt, the support vector, i.e., # of stable pixels for each disparity candidate in layer l. It is the unnormalized Pr(D_l).

To run them on a whole dataset, run

python gen_concur.py Algo DatasetFolder ResultFolder Dataset [UseLab]

e.g.,

mkdir -p results/stat
python gen_concur.py dp_mst testdata/halfsize results/stat halfsize

Arguments:

  • DatasetFolder: e.g., testdata/fullsize
  • ResultsFolder: ConcurFolder would be ResultFolder/concur_CurrentDateTime/ and SupportFolder = ResultFolder/support_CurrentDateTime/.

Compute GMM needed for DPM

  1. Generate Concurrence Matrices as above.

  2. Open matlab/readConcur.m. Change filename_format to use ConcurFolder and Algo.

  3. Open Matlab, cd matlab and find the GMM

    >> findGMMDrawPicForPaper(FullOrHalf, K, DatasetRatios, Times, Width); e.g., >> findGMMDrawPicForPaper('halfsize', 4, [1 0.5 0.3], 20, 0.1);

    Arguments:

    • FullOrHalf: "fullsize" or "halfsize"
    • K: find a GMM using 1,2,...,K gaussians.
    • DatasetRatios[array]: for each ratio in array DatasetRatios, random sample ratio*(#of all testcases) testcases from the dataset and generate GMM for each ratio.
    • Times: For each k in [1,K] and for each ratio in DatasetRatios, try Times to find the best GMM because ill-conditioned sigma sometimes makes it hard to find one GMM by a single trial.

    Outputs:

    • ../results/pic/GMM/GMM_l_S.eps, ../results/pic/GMM/GMM_l_S.fig: l is layer index.
    • ../results/GMM up to K Kernels for Times times gnd vs. Algo CurrentDateTime.html

Simulate the DPM process and draw figures

To draw PixelIntv_l, concur_l,{l-1}, simulated and statistical (true) P(D_l|D_{l-1}) (sgl), P(D_{l-1}|D_l) (lgs), and to obtain HTMLs for the uncover ratio, interval ratio and error rate w.r.t. true P(D_{l-1}|D_l), cd matlab, open Matlab and run

>> drawPicsForPaper(HTMLNameSpec, FullOrHalf, Test, Draw, Save, Level, DatasetRatio)

e.g., >> drawPicsForPaper('test', 'halfsize', false, true, true, 3, 0.5)

Arguments:

  • HTMLNameSpec[str]: the HTMLs would be saved at ../results/Prefix Report HTMLNameSpec FullOrHalf Prec DatasetRatio.html, where Prefix is "Uncover Ratio" or "E[err]" or "Interval".
  • FullOrHalf[str]: "fullsize" or "halfsize".
  • Test[bool]: true if just test a few testcases, see getDataSet.m. Otherwise, get results for the complete dataset.
  • Draw[bool]: true if want to show the figures. Uncomment the figures you want to draw in function drawAll.
  • Save[bool]: The figures would be saved in folders sgl, lgs, PixelIntv and concur under folder ../results/pic/FullOrHalf/.
  • Level[int]: number of layers.
  • DatasetRatio[double]: used to choose corresponding GMM.

Branches

  • master: the up-to-date reliable core code
  • real-reorganize: the up-to-date core code. possibly unreliable. If it is reliable, it gets merged with master.
  • add-kitti-tool: contain kitti tools in addition to the core code, master.
  • other-algo: contain others' related algorithms such as libelas in addition to add-kitti-tool

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •